
FEAP - - A Finite Element Analysis Program

Version 8.6 Contact Programmer Manual

R.L. Taylor
Department of Civil and Environmental Engineering

University of California at Berkeley, USA

G. Zavarise
Department of Innovation Engineering

University of Lecce, Italy

June 2020

Contents

1 Introduction 1
1.1 Description of basic characteristics 2

1.1.1 Surface definition . 3
1.1.2 Restrictions on input data . 5

1.2 Contact input commands . 6
1.2.1 Command structure . 7

1.3 Description of subprogram structure 15
1.3.1 Sizing of arrays . 20
1.3.2 Contact command control table 21

2 Contact driver: The CELMTnn subprogram 24
2.1 Control data tables . 26
2.2 Pair data: Surface arrays . 27
2.3 Material data . 30
2.4 History data management and assignment 30
2.5 Options in driver program . 34

2.5.1 Lagrange multiplier constraints 38

i

List of Figures

1.1 Mesh for indentor and platen for contact 4

2.1 Sequential search for LINE surface . 28
2.2 Reverse search for LINE surface . 29

ii

List of Tables

1.1 COMMAND Options . 12
1.2 Surface SUB-COMMANDS Options 12
1.3 Contact pair FEATURE options . 15
1.4 Contact call actions based on CSW values 17
1.5 Contact call actions based on CSW values 18
1.6 Program set contact pair control array - CP0 22
1.7 User set contact pair control array - CP0 22
1.8 Variable names set in contact pair table 23
1.9 Contact surface control array - CS0 23

2.1 Definition of history variables . 31
2.2 Activation of history variables . 32
2.3 Parameters for use in contact driver programs 33
2.4 Existing calls to contact drivers (Part 1) 35
2.5 Existing calls to contact drivers (Part 2) 41
2.6 Existing calls to contact drivers (Part 3) 42
2.7 Indirect calls to contact drivers . 42

iii

Chapter 1

Introduction

This manual is a short guide to describe the features of the FEAP contact algorithm.
The contact algorithm comes with a small library of basic features. For the use of
these existing features the algorithm can be treated as a black box. When imple-
menting new contact formulations the algorithm may be treated partially as a black
box. New contact formulations can be added similar to the way continuum elements
are added; hence, the user is not directly involved in the management of arrays for
history variables or in modifying some crucial data (e.g., the column height vector
for the global stiffness matrix).

In the next paragraphs the basic input data organization is described. More-
over, the basic structure of the algorithm and the currently available features also
are described. Finally, information is provided for users who are interested in im-
plementing new features or their own contact formulation.

This manual is not intended to provide any detailed information about contact
solution algorithms. However, it is assumed that the reader has some knowledge
about how contact algorithms are solved using the finite element method. For
example, some information on so called node to surface contacts may be found in
reference [1] with additional information in references [2] to [58].

1

CHAPTER 1. INTRODUCTION 2

1.1 Description of basic characteristics

Independent modules are used in FEAP to define contact interactions between sur-
faces. The data input for a contact interaction is provided after the initial mesh is
defined. Accordingly, contact data must follow the END mesh command and any TIE

mesh manipulation commands. The description of the contact algorithm is initiated
by a CONTact command and is terminated by an END command. Contact input data
is divided into three main categories:

1. SURFace definitions.

The SURFace definition is purely a geometrical description of any surfaces which
may be considered in any analysis involving contact between bodies. A surface
is defined as a group of element facets. A facet may be any geometric shape
which the contact formulation can consider. Facets may be single nodes, edges
of the finite elements defining each body, and/or faces of the finite elements.

2. MATEerial parameter definition.

The MATEerial parameter definition defines the constitutive characteristics of
a contact surface. For analyses in which there is no constitutive equation for
the normal direction but frictional behavior for sliding, the pseudo material
model is called standard and defined by a STANdard command.

3. PAIR definitions.

The PAIR definition defines two surfaces which can interact, as well as, the
associated material constitution(s) and details for the solution algorithm to
be employed.

FEAP uses the surface and material data sets to construct two independent con-
trol arrays which guide the overall solution process. As part of the control array
construction, FEAP determines the total number of facets, number of material pa-
rameter sets, and the sets of pair data. A user need not specify the total number of
pairs, facet or material sets (e.g., this is similar to FEAP’s ability to determine the
total number of mesh nodes, elements, and element material sets in the problem).
The pair data sets use the control array data sets to define and activate all contact
elements which may then be assembled into the residual and tangent arrays during
an analysis step. The use of the whole data structure is not mandatory. Conse-
quently, a user may define contact surfaces or contact materials that are not used

CHAPTER 1. INTRODUCTION 3

within an analysis. This provides a flexibility to rapidly modify the characteristics
of contact interactions. Moreover each contact pair may be enabled or disabled by
specifying a feature option, without removing any data. Finally, the treatment of
the contact part of an analysis can be deactivated simply by setting a flag. This fea-
ture permits a very efficient check on other features of the analysis without altering
any contact data.

1.1.1 Surface definition

Each surface is defined as a group of facets. A facet is defined within the FEAP
system by a sequence of global node numbers. For example, in a two-dimensional
analysis involving surface interactions between solid elements modeled by three-node
triangular finite elements (or four-node quadrilateral finite elements) a planar facet
is defined by two nodes which are sequenced to traverse a boundary such that an
outward normal points away from the body (i.e., the body lies to the left of the
facet). This involves a counter clockwise traversing of the boundary curve.

A user has the option to use the FACEt command and define each facet by a
its global node numbers (generation options are provided as described later) or to
define a surface segment (similar to the BLOCk or BLENd mesh commands) and let
FEAP locate the facets which lie near the region defined by the surface segment.

As a simple example, consider the definition of a contact interaction between the
indentor and the platen shown in Figure 1.1.

The FEAP input data for the contact part of the mesh shown in Figure 1.1 is
given by:

FEAP * * Start of Problem

.......

END of mesh

CONTact

SURFace 1 ! Define first surface

LINEar

FACEts

1 0 9 8

2 0 8 7

CHAPTER 1. INTRODUCTION 4

1 2 3

4 5 6

7 8 9

10

11

12

13

14

15

16

17

18

19

20

21

Time = 0.00Time = 0.00

Figure 1.1: Mesh for indentor and platen for contact

SURFace 2 ! Define second surface

LINEar

FACEts

1 0 19 16

2 0 16 13

3 0 13 10

PAIR 1 ! Define contact pair

NtoS 1 2

SOLM PENAlty 1.E+05

END contact

Note that in the above example no MATErial parameters are specified. For the PAIR

command a penalty method is requested and its parameters are associated with the
solution algorithm, not material characteristics. On the other hand, if a frictional
contact is necessary, a frictional constitutive model must be defined. For a Coulomb
model where normal contacts are rigid the required data is:

MATErial 1

CHAPTER 1. INTRODUCTION 5

STANdard model

FRICtion COULomb 0.15

If a penalty method also is used to impose the friction, the solution strategy record
would be modified to:

SOLUtion PENAlty 1.E+05 1.E+04

where, now, the first value applies to interactions normal to surfaces and the second
to tangential interactions (i.e., the frictional behavior).

The structure of the algorithm consists of a basic skeleton which can be treated
as a black box also from the programmers view point. This skeleton governs the
whole data management and the data exchange within FEAP. The user can pro-
gram and add new subroutines for data input of particular geometry, or automatic
geometry data generation. In the same way routines to read data for a user speci-
fied material model can be added, as well as the implementation of completely new
contact algorithms. Data input is organized by keywords. A dictionary of keywords
is defined is defined by the programmer and, in the case of new algorithms, every
new keyword should be recorded within the subprogram CONTINIT.

1.1.2 Restrictions on input data

For the currently implemented input data forms there are some restrictions on use.
These are:

1. A contact surface must be defined with facets all of the same type and number
of nodes.

2. The surface element definition is strictly related to the continuum discretiza-
tion.

3. A surface should pertain to only one region.

4. The same material properties are attributed to the entire surface or to the
whole pair. They may be nonlinear or involve history type variables to model
such phenomena as wear.

CHAPTER 1. INTRODUCTION 6

1.2 Contact input commands

All the contact commands should be placed immediately after the END of mesh
data and any mesh manipulation data (i.e., TIE or LINK commands, and should be
included within the contact start command CONTact and the end command END.

Contact data are divided into three basic parts: (a) Definition of surfaces; (b)
Definition of contact constitutive laws; and (c) Definition of contact pairs. There
is complete independence of the data between the contact surfaces and the contact
material sets. The coupling is carried out by a proper set of input data for the PAIR
command.

The following is a second example of data file:

FEAP * * example input file

......

mesh data

......

END

CONT

SURF 123 First surface

LINE 2

FACE

1 1 1 2

10 0 100 101

SURF 27 Second surface

LINE 2

FACE

1 1 700 701

10 0 710 711

BLOC SEGMENT

1 0. 0.

2 10. 2.

3 5. 0.5

FACE

1 1 711 712

CHAPTER 1. INTRODUCTION 7

10 0 718 719

MATE 8 Simple Coulomb friction

STAN

FRIC COUL 0.15

PAIR 5 First contact pair

NTOS 27 123

SOLM PENA 1.E5 1.E4

MATE, , 8

END

In the preceding example indentation has been used to clarify interdependence be-
tween data sets.

1.2.1 Command structure

All contact commands have a standard structure:

CONT,string,#,#

COMMAND, #, Comment label

type, #1,, #15

type data (optional)}

! blank record closes type data if they exist

feature, option, #1,, #14

feature, option, #1,, #14

feature, option, #1,, #14

sub-command, option, #1,, #14

subcommand data

subcommand data (optional)

! blank record closes subcommand data and command

COMMAND, #, Comment label

......

......

END

CHAPTER 1. INTRODUCTION 8

Every command set is terminated one or more blank records. A single blank record
also terminates input for a type and/or sub-command data set. Notice that there
is no need to duplicate the blank record which closes the last subcommand of a
command. All the commands have a fixed input structure, which identifies the
associated data set (i.e., Surface 100 Comment; Material 1 Comment; Pair 11 Com-
ment). It is not necessary to adopt a progressive numbering of surfaces, materials
or pair sets, numbering does not affect memory allocation, which is based only on
the number of commands input. This implies that one can define a problem with
two contact surfaces whose numbers are 100 and 500, and then define a contact pair
with number 123 that uses these surface numbers. Internally, FEAP will define a
sequential numbering and assign tag number 100 to the first set and tag number
500 to the second (assuming they are input in this order).

The CONT main command has an option string and two numeric data values
which are not used for normal purposes, but are very useful in debugging. The
command

CONTact OFF

causes all contact data to be skipped. This option is useful for a preliminary checks
on mesh data without contact. It permits the user to avoid deleting the contact
data when the example is tested without contact.1

Use of

CONTact DEBUg #1 #2

causes contact to execute in a debug mode. Special debug routines perform output
of various arrays and each contact routine write its name on a file each time they
are called. The two related numbers define respectively the file unit for list of call
outputs and for array outputs, respectively. Default unit numbers are 99 and 98.
Output is found in files named Cdebug (unit #1) and Cdebug0 (unit #2).

Use of

CONTact ON

1Another option is to place a ! before the CONTact command.

CHAPTER 1. INTRODUCTION 9

results in normal execution mode (default mode when the option ON is not specified).

The currently available contact commands are the following:

Name Description
SURF Input of contact geometry
MATE Input of contact materials
PAIR Definition of the contact pairs
READ Switch input to another file
SAVE Save data on a file
END End of contact data input

The structure of each contact command record is:

COMMAND # Comment_label

where # is a description number, and any comment label is simply placed in the
output file.

Command data sets should terminate with a blank record. Each command can
contain one or more additional data records. The first record after a command is a
type declaration, which has the following structure:

type #1 #2 #15

Such type declarations describe the main qualifying characteristic for each command,
(i.e. the type of element used for the SURF command, the type of material used for
the MATE command, the type of contact formulation for the PAIR command.

In particular, the type declaration of the MATE command permits one to define
the subprogram to read material data, and the type declaration of the pair command
permits one to describe the corresponding contact element. A type declaration does
not have a second string description and accepts a maximum of 15 numerical input
values. Each specified string description is converted in a numerical value which
corresponds to the position within the control array. The values of all numerical
parameters input are stored in the type column of the command control table (see
section on control tables below). A type declaration can be followed by additional

CHAPTER 1. INTRODUCTION 10

data records. This data is input by user subroutines, hence the format may vary in
each instance depending on how much is input; however a standard format consisting
in two strings and up to 14 numerical data is strongly recommended. Such data are
stored in suitably allocated arrays, e.g., the material vector. This is the case for
the material data record FRIC COUL 0.15 in the previous example where the value
of the friction coefficient must be stored as a material parameter (i.e., there are 50
values possible for each material set in the CM array).

A feature record contain information that characterizes basic choices in more
detail than a type declaration. A feature data permits one to specify certain options
available within the same contact element, e.g., the solution method using penalty
or Lagrangian multipliers. The structure of a feature record is the following:

FEATURE, option, #1, #2,,, #14

Which means every feature has a string variable which describes an option of the
feature, and up to 14 numerical values. Also in this case a numerical translation of
the feature and option string is performed, and the data stored in a feature column
of the command control table (see section on control tables). The number of the
column correspond to the number of the feature within the control table (These are
set by the order given in the subprogram CONTINIT).

Finally a sub-command declaration can be used to input and store data in the
same way that the type declaration does.

Subcommand data is terminated by a blank record. Contact surface input can
be performed by using subcommands such as: FACEt, BLOCkand/or BLENd. FACEt is
a subcommand which has no options and no numeric variables on the same records.
It causes input of the subsequent data records (i.e., nodal connections for each
element). BLOCk and BLENd are a sub-commands which generate automatically nodal
connections along an edge whose characteristics are declared in subsequent data
records.

Sub-command dependent data records are read in user subroutines hence the
input format has no restrictions; however, in this case also we strongly suggest to
keep the feature data structure, i.e., two string data items and up to 14 numeric
data items.

A programmer has the possibility to list in the database new type declarations,
new features and feature options, new sub-command and sub-commands options.

CHAPTER 1. INTRODUCTION 11

A programmer also has also the possibility to add routines to input type declara-
tion and sub-command data. Basic modifications proceed by making appropriate
modifications to the subprogram CONTINIT.

However the current capability to input surface geometry can manage with most
practical cases. Instead, it is more relevant for programmers to add new material
input/computation routines.

SURFace descriptions

The SURF command record has the following type declarations listed:

TYPE,element type, # of nodes per element

Options available are shown in Table 1.1 and described as:

1. LINE - Two-dimensional contact element defined on the x − y plane. The
number of nodes (two or more) should be specified by the user.

2. TRIA - Three-dimensional triangular contact element with three or more
nodes.

3. QUAD - Three-dimensional quadrilateral contact element with four or more
nodes.

4. BEAM - Beam contact element with two or more nodes.

5. POIN - Point (nodal) contact element with one node.

6. RIGI - Rigid contact surface with functional form.

Note that the availability of the input routines for the various geometries does not
imply the existence of any contact driver to solve a problem (In particular no use of
the beam type is available). These options are simply provided to the user to input
data in a standard manner and to build the control arrays. We emphasize again that
construction of control tables does not imply one will use it! All the input commands
simply generate and arrange the data in a suitable way for developing the compute

CHAPTER 1. INTRODUCTION 12

Commands
Option 1 2 3
Number SURF MATE PAIR

1 LINE STAN NTOS
2 TRIA NLFR PTOP
3 QUAD USER NTON
4 BEAM PTOR
5 POIN NTOR
6 RIGI TIED

CEL1
to

CE20

Table 1.1: COMMAND Options

capability. The possibility to solve a specific problem is checked by verifying what
the available contact drivers (i.e., the subprograms CELMT01 to CELMT20) can do.

No features are actually listed for the SURF command, instead it has the above
cited sub-commands (i.e., FACE BLOC and BLEN), as well as, any additional ones listed
in the FEAP user manual. Table 1.2 summarizes the available subcommand options
for each of the surface input sub-commands.

Subcommands
Option 1 2 3 4 5

Number FACE BLOC BLEN REGI FUNC
1 GAP GAP CYLI
2 SEGM SEGM SPHE
3 POLA EXTE CART
4 CART PLAN
5 REGI POLY

Table 1.2: Surface SUB-COMMANDS Options

The FACE subcommand performs input of data as the standard ELEM command
in mesh; however, there is no material or region associated for the contact case. If
an increment different from zero is specified automatic generation of the missing

CHAPTER 1. INTRODUCTION 13

elements between the current and the next one is performed. Such generation is
based on the node number of the first element and on the specified increment. Node
numbers of the next element are not involved. The element input these as follows:

FACEt

El.#, increment, N1, N2,, NN

El.#, increment, N1, N2,, NN

The BLOC and BLEN commands perform generation of contact element for two
dimensional elements of LINE type and three dimensional elements of QUAD type.
The BLOC sub-command requires the following data records:

#_Block_Node x y z

whereas the BLEN command requires a sequence of super nodes to describe the surface
to be searched. The form of the data is given as

S_node_1 S_node_2

MATErial descriptions

The MATErial command is used to input contact surface material characteristics. It
should be recalled that for simple contact without friction the satisfaction of the non-
penetration conditions can be performed without any material command defined. In
this case contact is treated as a purely geometrical constraint (frictionless contact).
In case of frictional contacts the material friction coefficient must be specified as
a material parameter. We note that in the case of a penalty method one more
parameter is necessary, (i.e., the penalty value). Due to the fact that this is not a
material value, but a solution strategy value, it is specified as parameter in the a
feature record of the PAIR command. The MATE commands should be followed by
the TYPE record. The type declaration has the following structure

material_type #_of_surface

where the # of surface field take value 1 if the material model is specific to one
surface, or 2 if the material model takes into account the characteristics of both the
contacting surfaces.

CHAPTER 1. INTRODUCTION 14

MATEerial types available are:

1. STAN - Standard rigid-with-friction material. Material data are specified in
following feature-dependent data records. For the material currently available
only a Coulomb friction model is available.

FRIC,COUL, friction coefficient

2. NLFR - Nonlinear friction model.

3. USER - User specified model.

It should be noted that the choice to place the input for the friction coefficient
on a separate record, declaring the friction model COUL, will permit one to easily
add different friction models later.

PAIR descriptions

The PAIR command collects information from the SURF and MATE data to complete
the data for each contact problem. Moreover some features that pertain to the
solution strategy to be employed are specified. All options have a default value,
except the solution method (SOLM), which requires specification of the method and
any values needed (e.g., PENA and the value of the penalty parameters). The available
features and options are the following:

1. DETA: Detection algorithm to check contact status

2. MATE: Mechanical Properties to be used for contact stiffness

3. SOLM: Solution method

4. AUGM: Augmentation

5. SWIT: Activate / deactivate a contact stiffness

6. TOLE: Specify contact tolerances

The available options for the cited features are given in Table 1.3. It has to be
restated that the availability of the listed features does not imply the existence of
any contact driver which uses all of them. It is the programmers responsibility to
develop specific contact drivers which use specific combinations of the above features.

CHAPTER 1. INTRODUCTION 15

Features
Option 1 2 3 4 5 6 7

Number SWIT SOLM DETA MATE AUGM TOLE ADHE
1 OFF PENA BASI OFF NONE INFI
2 ON LAGM SEMI BASI PENE STRE
3 TIMF CROC RIGI HSET OPEN
4 CONS LISE OUTS
5 SHAK SMAU
6 RATT

Table 1.3: Contact pair FEATURE options

Other command descriptions

All other commands READ, SAVE, END are executed by calling existing subroutine
of the MESH section, hence they are properly described in the FEAP Manual.

1.3 Description of subprogram structure

The contact algorithm structure is modular. The FEAP system connections to data
are limited only to a contact switch(CSW). All the connections are performed by
calling the same routine with a proper value of the switch. The main routine then
performs a set of calls to a contact driver routine or to other FEAP subprograms
in order to satisfy the input request. In case of data exchange with the rest of
the program the contact driver routine retrieves the necessary arrays. There is no
direct data exchange through the parameters of the call. Some data is exchanged
by accessing FEAP common blocks. The main contact driver routine is called each
time the element library is called. For a solution step there are two calls: (a) One
just before the finite element array (residual and tangent) computations; and (b)
the second just after. These entries are characterized by the contact switch CSW

value which takes a value equal to the continuum element switch ISW for the second
call (i.e., after the call to the finite element library), and the same value as ISW

plus 100 (i.e., CSW = ISW + 100) for calls just before the finite element library call.
Moreover there are direct and special calls identified by the switch values CSW =
200-299, 300-399, 400-499. Tables 1.4 and 1.5 show all currently defined values, and

CHAPTER 1. INTRODUCTION 16

the correspondent action performed.

The following list provides a brief description of the contact subroutines.

1. Data input - CSW=1

(a) SKIPCONT Skip contact input data if contact is non active.

(b) CONTINIT Initialize input dictionary for commands, type definitions, fea-
tures, feature options, sub-commands, sub-command options, set dimen-
sions of command control tables.

(c) PNUMC Determine the number of surfaces,materials and pairs.

(d) COMCONTAB Set up dimensions of contact command control tables and the
length of the array requested to store them.

(e) PALLOC Allocate memory for command control tables (C0). Allocate
memory for the material data vector (CM). Allocate memory for the nodal
connections data (ICS). At this stage the number of nodes to be stored
is not known.

(f) PCONT Main driver routine of the input phase. All the input commands
are filtered here.

(g) PALLOC Extend memory area for nodal connection vector, allocate
memory for the history variable management correspondence array (HIC).

(h) DEFAULTP Set default of all non explicitly declared options for the contact
pair.

(i) CONTLIB Switch to the requested contact element to perform the initial-
ization phase.

(j) STOHMAN Store history management correspondence vector.

(k) PALLOC Allocate memory for the contact history variables (vector CH).
This vector is then fragmented in three vectors, CH1, CH2, CH3, which
correspond to the continuum element vectors H1, H2 and H3, respectively.

The listed subroutines call the following second, third and fourth level routines:

The following call structure is the simplest one, because it requires a direct
call to the contact driver with the appropriate contact switch value. The contact

CHAPTER 1. INTRODUCTION 17

CSW A CCW A CSW A ACTION
0 - 100 - 200 x Show element infor-

mation
1 x 101 - Input of data
2 x 102 - Check of data
3 2 103 x Form stiffness / check

geometry
4 - 104 - 204 2 Print contact status
5 - 105 -
6 106
7 107 -
8 108
9 109

10 110
11 111
12 112
13 113
14 2 114 - Initialize history vari-

ables
15 115
16 116
17 117
18 118
19 119
20 120

300 2 Profile maximization
(obsolete)

301 x Time step update
302 x Back-up to the begin-

ning of the step

403 x Reset profile for active
contacts

Table 1.4: Contact call actions based on CSW values

CHAPTER 1. INTRODUCTION 18

driver (user developed) can then perform the requested action locally or can call
other routines (see also the description of the node-to-segment contact driver). This
structure is used to satisfy request for data check (CSW=2); Compute stiffness and
residuum (CSW=3); Initialize data at the start (CSW=14); print contact status
(CSW=204); profile maximization (CSW=300).

1. For the values: CSW=2, 3, 14, 204, 300 The listed subroutines call the fol-
lowing second level routines:

(a) CDRIVLIB Contact driver library.

i. SETCOMP Load on commons contact pair data for the current pair

ii. CDRIV# Contact driver required by the problem described in the PAIR
features

(b) The following call structure is used to check active contact and, compute
geometrical variables and determine the new shape of the stiffness matrix.

i. For CSW=103:

A. CDRIVLIB Contact driver library for geometry check

B. RSTPRF Reset profile for continuum discretization

CSW Values Description
0<=CSW<=20 Call from FORMFE after continuum ele-

ments to perform an equivalent action
100<=CSW<=120 Call from FORMFE before continuum ele-

ment call to perform special action
200<=CSW Direct call outside FORMFE to perform an

equivalent action
300<=CSW Call for element non–standard calls
400<=CSW Special internal calls

x Action performed in a proper section
Action performed in section

- Not allowed —return with no warning
Action still not defined—return with no
warning

I Internal call not from CONTLIB

Table 1.5: Contact call actions based on CSW values

CHAPTER 1. INTRODUCTION 19

Subprogram Description
SKIPCDAT Skip input data between contact commands.
CRSURF Driver to read and print surfaces data.
CRMATE Driver to read and print material data.
CRPAIR Driver to read and print pair data.
READFL Switch input data reading to another file.
SAVEFL Save data on a file.
CUNU1 Unused contact command # 1.
CUNU2 Unused contact command # 2.
CUNU3 Unused contact command # 3.
CRTYPE Input subroutine for reading type declarations.
CRDATA Input subroutine to read features and sub-commands.
CREL01 Read surface element connections generated by the

FACE sub-command
CREL02 Read surface element connections generated by the

BLOC sub-command
CRBLOK Perform automatic generation of the BLOC command
CRMAT01 Read material data requested by the type declaration,

for simple no-material with Coulomb friction
CRMAT02 Unused subroutine available for a new material
CUMATER Unused subroutine available for a new material
CRSURF Unused routine to read type declaration data or sub-

command data.
SETCOMP Load on commons contact pair data for the current pair
CELMT# Contact driver routine. Equivalent to the standard ele-

ment routine ELMT#
ACTIVE Function that performs variable activation and defini-

tion of the number of sets required for the pair.

C. CDRIVLIB Internal call (CSW=403) to reset profile for contact

D. NWPROF Set new pointers for the profile

(c) The following structure is used to show element information. In this case
all the available element are scanned to check their properties.

i. For: CSW=200

A. CDRIVLIB Contact driver library for geometry check

CHAPTER 1. INTRODUCTION 20

B. RSTPRF Reset profile for continuum discretization

Also in this case the listed subroutines call the same second level
routines of the previous case.

(d) The next structure is called to perform time step updates

i. For CSW=301

A. CRESHIS Perform dump of the history vector CH2 on to CH1

No higher level subroutines are called.

(e) The next structure is called to perform time step update

i. For CSW=302

A. CRESHIS Perform copy back of the history vector CH1 on to CH2.

No higher level subroutines are called.

All the other still undefined or not allowed entries are processed in silent
mode.

1.3.1 Sizing of arrays

The limits on storage of various data arrays in the contact elements is set in the
include file C 0.H. The file is given as

! CONTACT PARAMETERS

integer c_ncc,c_ncs,c_ncel,c_lp1,c_lp3,c_lmv

parameter (c_ncc=10) ! # available contact commands

parameter (c_ncs=200) ! # available command strings

parameter (c_ncel=22) ! # available contact elements

parameter (c_lp1 = 200) ! # available history variables

! for vectors CH1 & CH2

parameter (c_lp3 = 100) ! # available history variables

! for vectors CH3

parameter (c_lmv = 50) ! # available material parameters

Generally, this file must be included in any file which contains contact common files
(i.e., any include file which has name C xxxx.H.

CHAPTER 1. INTRODUCTION 21

1.3.2 Contact command control table

For each contact command used in the input file a control table is built up. Such
table permits to store all the options associated to the command. It permits also
to deposit memory offsets or other values specifically related to the command itself.
In case some options are not specified in input, default values are assigned.

This control table is a matrix here all the descriptions for input or default data
are stored. All the control tables have the same number of rows, currently set to 16.
This corresponds to the maximum number of variables which may be assigned to
data record. The number of columns depends on the number of features defined for
the command, plus the number of user defined columns, plus the number of system
defined columns, plus a type declaration column. The number of rows is the same
for all the table, and the size of each control table is hence defined by:

1. Feature columns: There is one columns for each assigned feature. The
number of features is assigned in subprogram CONTINIT.

2. User extra columns: These columns are available for the user to store user
values related to that specific command. The number of user extra-columns
should be set in the initialization routine CONTINIT, the default value is zero.

3. System extra columns: These columns are used by the contact skeleton to
store pointers or other global values. They have been set for each table and
should not be changed. Generally, the system columns are assigned to negative
column indices in each control table and are not passed to the contact driver
routine.

4. Type declaration column: This column is similar to the feature columns,
and stores the type data. This data is assigned to column zero in each table.

All the values which define the size of each control table are grouped in the
subroutine CONTINIT, and can be easily modified.

The number of control tables depends on the number of commands input to
describe the contact problem. One pair control table is defined for each command
PAIR appearing in the input data and one surface control table is constructed for
each SURFace command appearing. All control tables are assigned to the array C0

allocated by the subprogram PALLOC. Tables are stored by contact command order,
and then tables related to the same commands are sorted by number.

CHAPTER 1. INTRODUCTION 22

Command System Type
Number -1 0

1 Pair No. ELMT No.
2 h1offset S1

3 h3offset S2

4 lh1 -
5 lh3
6 nset
7 nsurf1
8 nsurf2
9 nmat1
10 nmat2
11 nacte
12 genf
13 ncdim

Table 1.6: Program set contact pair control array - CP0

Command Features User
Number 1 2 3 4 5 6 7 8

1 SWIT SOLM DETA MATE AUGM TOLE ADHE -
2 Opt. Opt. Opt. Opt. Opt. Opt. Opt. -
3 Norm. Kn - M1 - tlpen σad -
4 Tang. Kt M2 tlopn -
5 Ther. Kh - tlout
6 - - -

Table 1.7: User set contact pair control array - CP0

CHAPTER 1. INTRODUCTION 23

Option Features
Number -1 0 1 2 3 4 5 6 7

1 npair ndrv
2 ofh1 ifsolm ifdeta ifaugm ifadhe
3 ofh3 ifon tlipen
4 lh1 iffric tlopen
5 lh3 tlouts
6 nset
7 nsurf1
8 nsurf2
9 nmat1

10 nmat2
11 nacte
12
13 cndm

Table 1.8: Variable names set in contact pair table

System Type Feature User
-1 0 1 2

No. Surf. TYPE - -
soffset nope
emax -

dnope
-

Table 1.9: Contact surface control array - CS0

Chapter 2

Contact driver: The CELMTnn

subprogram

All the connection with the FEAP program takes place through the main contact
subroutine CONTACT. The subroutine receives only the contact switch value for CSW,
and then performs the requested activity switching to the input routines, or to the
contact elements library routine CONTLIB which calls the appropriate contact driver
routine (e.g., a routine between CELMT01 and CELMT20). A typical structure for a
contact driver routine is given by:

subroutine celmt01 (ndm,ndf,x,u,

& csw,npair,cs01,cs02,cm01,cm02,cp0,

& ix1,ix2,cm1,cm2,ch1,ch2,ch3,ww1,ww3)

c-----[--.----+----.----+----.----+----.----+----.----+----.----]

c Inputs :

c ndm - Space dimension of mesh

c ndf - Number dof/node

c x(*) - Nodal coordinates

c u(*) - Current nodal solution vectors

c csw - Contact switch

c npair - # of current pair

c cs01(*) - Contact surface control data for surface 1

c cs02(*) - Contact surface control data for surface 2

c cm01(*) - Contact material control data for surface 1

24

CHAPTER 2. CONTACT DRIVER: THE CELMTNN SUBPROGRAM 25

c cm02(*) - Contact material control data for surface 2

c cp0(*) - Contact pair control data

c ix1(*) - Element nodal connection list for surface 1

c ix2(*) - Element nodal connection list for surface 2

c cm1(*) - Contact materials data storage for surface 1

c cm2(*) - Contact materials data storage for surface 2

c Outputs:

c ch1(*) - Contact history variables (old)

c ch2(*) - Contact history variables (current)

c ch3(*) - Contact history variables (static)

c ww1(*) - Dictionary of variables for CH1 & CH2

c ww3(*) - Dictionary of variables for CH3

c-----[--.----+----.----+----.----+----.----+----.----+----.----]

implicit none

include ’c_0.h’ ,’c_comnd.h’,’c_contac.h’,’c_geom.h’,

include ’c_keyh.h’,’c_mate.h’,’c_pair.h’,’c_tole.h’

include ’iofile.h’,’print.h’

character ww1(*)*(*),ww3(*)*(*)

integer ndm,ndf,csw,npair,ix1(dnope1,*),ix2(dnope2,*)

real*8 cs01(nr0,n0c1:*),cs02(nr0,n0c1:*),cm01(nr0,n0c2:*)

real*8 cm02(nr0,n0c2:*), cp0(nr0,n0c3:*),cm1(*),cm2(*)

real*8 ch1(lh1,*),ch2(lh1,*),ch3(lh3,*),x(ndm,*),u(ndf,*)

call cdebug0 (’ celmt01’,csw) ! Outputs debug data

if ((csw.eq. 1) then ! Initialize assign history

elseif ((csw.eq. 3) then ! Compute tangent and residual

elseif ((csw.eq.103) then ! Compute contact geometry

elseif ((csw.eq. 14) then ! Initialize history data

elseif ((csw.eq.400) then ! Start new problem

once = .true.

endif

end

The first few arguments in the driver subprogram CELMTnn are values associ-

CHAPTER 2. CONTACT DRIVER: THE CELMTNN SUBPROGRAM 26

ated with the finite element model. Thus, NDM and NDF are the space dimension
of the mesh and the (maximum) number of degrees of freedom associated with
each node, respectively; X is the array of nodal coordinates (type REAL*8) dimen-
sioned X(NDM,*); and U is the array of solution parameters (REAL*8) dimensioned
U(NDF,*) (actually the array is dimensioned U(NDF,NNEQ,3) where the second and
third columns contain incremental values; however, the geometric aspects of contact
normally require only the solution parameters to construct current coordinates).
Using these two arrays, the current position of a node NN may be computed as

DO I = 1,NDM

x_cur(I) = X(I,NN) + U(I,NN)

END DO ! I

where it is assumed that ui, i = 1, ndm contains displacements in the direction of
xi.

The next two arguments on CELMTnn are the contact switch parameter CSW and
the pair number being processed, NPAIR, both are of type INTEGER. The NPAIR

parameter is used only for output and thus is not usually needed during any com-
putation phase.

2.1 Control data tables

The arguments CS01 and CS02 provide the values in the surface control data tables
for surface number 1 (the first surface number on the PAIR command) and surface
number 2 (the second surface number on the PAIR command, respectively. These
tables are dimensioned

REAL*8 CS01(NR0,N0C1:*),CS02(NR0,N0C1:*)

The number of rows in each array is NR0 and is currently set to 16. The column
numbers define the feature and user columns and N0C1 is currently set to 1. Based
on the problem input records the data in these arrays is assigned as described in
Tables 1.2 and 1.9.

Similarly, the material control data is passed through arguments CM01 and CM02.
These are dimensioned

CHAPTER 2. CONTACT DRIVER: THE CELMTNN SUBPROGRAM 27

REAL*8 CM01(NR0,N0C2:*),CM02(NR0,N0C2:*)

These also describe the feature and user data starting with N0C2 (currently set to
1).

Finally, the pair control data is passed as the argument CP0 and is dimensioned

REAL*8 CP0(NR0,N0C3:*)

in which N0C3 is set to 1. The data is stored as described in Tables 1.3, 1.6 and 1.7.

2.2 Pair data: Surface arrays

The nodal connection lists for surface 1 and surface 2 are passed through the argu-
ments IX1 and IX2, respectively. These are dimensioned

INTEGER IX1(DNOPE1,*),IX2(DNOPE2,*)

in which DNOPE1 and DNOPE2 are defined in common block C GEOM as described in
Table 2.3. The actual number of nodes attached to each connection array may differ
from the dimension and are given by the parameters NOPE1 and NOPE2, also passed
through common C GEOM. The main difference is for the LINE option where there
are two added columns to assist locating the geometric point of contact. A typical
array (e.g., IX1) then has the form

NODE_1 NODE_2 ELMT_1 ELMT_2

IX1(1,*) IX1(2,*) IX1(3,*) IX1(4,*)

in which NODE 1 and NODE 2 are the facet global node numbers and ELMT 1 is the
facet number adjacent to the current facet (before) and ELMT 2 is the facet number
which is adjacent (after). A zero ELMT 1 or ELMT 2 define the ends of the surface
(note there can be only one ELMT 1 and one ELMT 2 defining end points on any one
surface – i.e., the surface must be connected). Using this scheme it is easy to locate
an adjacent element when the contact node slides from one facet to an adjacent one.

CHAPTER 2. CONTACT DRIVER: THE CELMTNN SUBPROGRAM 28

c Locate start segment

do nel1 = 1, neps1

if(ix1(dnope1-1,nel1).eq.0) then

ns1 = nel1

go to 100

endif

end do ! nel1

100 continue

c Loop over segments (Forward sequence)

check1 = .true.

do while (check1)

ixl(1) = ix1(1,ns1)

... Insert rest of code

ns1 = ix1(dnope1,ns1)

if(ns1.le.0) then

check1 = .false.

endif

end do ! while check1

Figure 2.1: Sequential search for LINE surface

A simple example for a search which starts at the first segment and continues to the
last is given in the code fragment of Fig. 2.1.

When matching with another surface to find a possible contact pair one may
wish to traverse in a reverse sequence. A code fragment for this is given in Fig. 2.2.

Other command options than LINE do not have additional columns (thus, DNOPE1
= NOPE1), and thus, all columns denote potential contact node numbers.

The geometry of the facets described by the surface node connection numbers in
arrays IX1 and IX2 are used to find which parts of surface pairs are in contact and
which are not. Thus, when CSW = 103 it is necessary to check all the facets on surface
IX1 against those on surface IX2 and determine, using whatever contact strategy
is being considered, whether a contact state exists or not. This aspect is quite

CHAPTER 2. CONTACT DRIVER: THE CELMTNN SUBPROGRAM 29

c Locate start segment

do nel2 = 1, neps2

if(ix2(dnope2,nel2).eq.0) then

ns2 = nel2

go to 200

endif

end do ! nel2

200 no2 = ns2

c Loop over segments (Reverse order)

ns2 = no2 ! Can use to restart at ’no2’

check2 = .true.

do while (check2)

ixl(...) = ix2(1,ns2)

... Insert rest of code

ns2 = ix2(dnope2-1,ns2)

if(ns2.le.0) then

check2 = .false.

endif

end do ! while check2

Figure 2.2: Reverse search for LINE surface

different from coding of standard finite elements for FEAP and why it is necessary
to have a special module to carry out contact. Currently implement algorithms use
either a node to node algorithm (NtoN or PtoP option on the PAIR command) or

a node to surface algorithm (NtoS option on the PAIR command. Thus, for
any other strategy it is necessary for users to construct their own module (i.e., the
contact driver routine CELMTnn). Indeed, users may find better strategies for even
the node to node or node to surface algorithms currently in the program.

CHAPTER 2. CONTACT DRIVER: THE CELMTNN SUBPROGRAM 30

2.3 Material data

For material models which have parameters to describe their behavior the contact
driver passes the arrays CM1 and CM2 for the surface pairs 1 and 2, respectively.
These arrays are dimensioned

REAL*8 CM1(*),CM2(*)

and, thus, it is evident they apply to all facet pairs of the current contact surfaces.

2.4 History data management and assignment

The arrays which contain any history data are passed through the arguments CH1 (for
data defined at tn), CH2 (for data described at tn+1) and CH3 for data independent
of time. In addition two character arrays W1 and W3 are passed to facilitate the
assignment of specific data items to each of the history arrays. The W1 and W2

arrays are dimensioned as

CHARACTER W1(*)*(*),W3(*)*(*)

To understand how the CHi data is used, it is necessary to describe in more detail
the method used within the contact module to manage this data.

To manage the assignment of the history data depending on what data in actually
input, two routines are written which describe all the types of history variables
possible and those which are actually active. One subprogram is the define routine
and the other the activate routine which will look at the data and make appropriate
choices. A typical definition routine, called DEFHV01 here, is given in Table 2.1.

During contact definition (generally when CSW = 1 the necessary parameters to
perform a contact analysis are activated using a set of calls to ACTIVE. These may be
placed in an activation routine, called ACTHV01 here, as shown in Table 2.2. With
this structure it is possible to have just the number of history variables needed
to solve each specific problem. There are a number of parameters which are set
automatically depending on the contact data provided as input. A list of these
parameters is given in Table 2.3.

CHAPTER 2. CONTACT DRIVER: THE CELMTNN SUBPROGRAM 31

subroutine defhv01 (ww1,ww3)

c-----[--.----+----.----+----.----+----.----+----.----+----.----]

c Outputs:

c ww1(*) - Dictionary of variables for CH1 & CH2

c ww3(*) - Dictionary of variables for CH3

c-----[--.----+----.----+----.----+----.----+----.----+----.----]

implicit none

character ww1(*)*8,ww3(*)*8

call cdebug0 (’ defhv01’,0)

c CH1 & CH2 VARIABLES (dynamic, CH2 copied in CH1)

ww1(1) = ’masts’ ! Master segment number

ww1(2) = ’istgn’ ! Contact normal state indicator

ww1(3) = ’istgt’ ! Contact friction state indicator

ww1(4) = ’gapn’ ! Contact normal gap

ww1(5) = ’gapt’ ! Contact tangential slip

ww1(6) = ’fn’ ! Normal contact force

ww1(7) = ’ft’ ! Tangential contact force

c CH3 VARIABLES (static, never automatically modified)

ww3(1) = ’area’ ! Area of contact surface

end

Table 2.1: Definition of history variables

As noted above, the history variables for each contact pair are passed through
the argument list of the contact driver subprogram (CELMTnn) as CH1 (data at time
tn), CH2 (data at time tn+1) and CH3 (data not changing with time). The arrays
CH1, CH2 and CH3 are dimensioned in the driver as:

REAL*8 CH1(LH1,*),CH2(LH1,*),CH3(LH3,*)

CHAPTER 2. CONTACT DRIVER: THE CELMTNN SUBPROGRAM 32

subroutine acthv01 (nset)

c-----[--.----+----.----+----.----+----.----+----.----+----.----]

c Inputs :

c nset - # of history set required for contact pair

c-----[--.----+----.----+----.----+----.----+----.----+----.----]

implicit none

include ’c_pair.h’

logical errck,active

integer nset

call cdebug0 (’ acthv01’,0)

c Activation of variables

errck = active (’istgn’,1)

errck = active (’gapn’ ,1)

errck = active (’fn’ ,1)

errck = active (’area’ ,1)

if (iffric.eq.1) then ! SET FOR FRICTION

errck = active (’istgt’ ,1)

errck = active (’gapt’ ,2) ! Two components in 3-D

errck = active (’ft’ ,2) ! Two components in 3-D

endif

c Stop variable activation and define # of data sets

errck = active(’stop’, nset) ! Must be last call

end

Table 2.2: Activation of history variables

where LH1 is the number of variables assigned to each contact element for the CH1

and CH2 arrays (this is the number allocated by the subprogram ACTHVnn as W1(j)

items) and LH3 is the same for the items named W3(j). Note that all history variables

CHAPTER 2. CONTACT DRIVER: THE CELMTNN SUBPROGRAM 33

Variable Type COMMON Description
Name BLOCK (Values)
iffric Int C PAIR 0 = Frictionless; 1 = Friction
ifsolm Int C PAIR 1 = PENA; 2 = LAGM; 3 = CROC; 4 =

CONS
ifdeta Int C PAIR 1 = BASI; 2 = SEMI; 3 = RIGI
ifaugm Int C PAIR 0,1 = OFF; 2 = BASI; 3 = HSET; 4 = LISE;

5 = SMAU
ifadhe Int C PAIR 1 = INFI; 2 = STRE
tlipen Real C TOLE Tolerance for initial penetration
tlopen Real C TOLE Tolerance for opening gap
tlouts Real C TOLE Tolerance for out of segment
neps1 Int. C GEOM Number of elements on surface 1
neps2 Int. C GEOM Number of elements on surface 2
dnope1 Int. C GEOM Dimension for IX1 array
dnope2 Int. C GEOM Dimension for IX2 array
nope1 Int. C GEOM Number nodes/element on surface 1
nope2 Int. C GEOM Number nodes/element on surface 2
ifsty1 Int. C GEOM Surface 1 type: 1 = LINE; 2 = TRIA; 3 =

QUAD; 4 = BEAM; 5 = POIN ; 6 = RIGI
ifsty2 Int. C GEOM Surface 2 type: 1 = LINE; 2 = TRIA; 3 =

QUAD; 4 = BEAM; 5 = POIN ; 6 = RIGI
ifmty1 Int. C MATE Surface 1 material type: 1 = STAN; 2 =

NLFR; 3 = USER
ifmty2 Int. C MATE Surface 2 material type: 1 = STAN; 2 =

NLFR; 3 = USER

Table 2.3: Parameters for use in contact driver programs

are stored as REAL*8 values, thus, as in treatment of history variables in the finite
elements, it is necessary to recast any integer values using a statement

II = NINT(CH1(...))

Specific data items are found using two pointer arrays named P1(*) for those associ-
ated with W1(*) assignments and P3(*) for that of W3(*). For example, to extract

CHAPTER 2. CONTACT DRIVER: THE CELMTNN SUBPROGRAM 34

the value of the gap at time tn for the element number NELM for the assignment
order given in Table 2.1, one uses the statement:

NGAP = CH1(P1(4),NELM)

since the normal gap is defined by W(4). Note that it is not necessary to use the same
name as given for the definition, only the same position. Similarly if one wanted to
extract the area to be used for the same element one uses the statement

AREA = CH3(P3(1),NELM)

Care must be taken to ensure that the specific variable was activated for the
problem at hand (i.e., checks such as given in the activation subprogram described
in Table 2.2 should be included). For example to extract the friction force one should
use

IF(IFFRIC.EQ.1) THEN

FT = CH2(P3(7),NELM)

ELSE

FT = 0.0d0

ENDIF

to ensure that correct extraction is made (of course the above may need to be
modified if other friction models are described for the IFFRIC variable).

2.5 Options in driver program

Tables 2.4 to 2.6 describe all the direct calls to CELMTnn which currently exist. A
user will not need to code all of the options to get a working element (see below for
more information on what MUST always be implemented).

The other indirect calls to the contact elements are defined by the CSW values
shown in Table 2.7

Remarks:

CHAPTER 2. CONTACT DRIVER: THE CELMTNN SUBPROGRAM 35

Calling CSW Description of action to be performed
Routine Value in contact driver routine.
FORMFE X isw Perform operation equivalent to isw in FE’s Not

called when ‘isw’ is 1 (MATE); 4 (STRE); 5
(MASS); or 7 (Obsolete surface load treatment).
N.B. FORMFE is the routine which does all finite
element array calculations – it always calls CON-
TACT (ISW).

CONTACT X 0 Called after initialization to allow users
to change default pair name ‘celn’ to any character
name.

PCONTR X 1 Called immediately after ‘CONT’act data input.
Perform any sets on ‘input’ parameters; must de-
fine all history variables which can ever exist. Must
be processed only once, thus it requires a ‘once’
flag to test against. N.B. In fact, like normal input
data, FEAP reads the contact data twice: Once to
determine how many surfaces, pairs, materials ex-
ist (used to define the tables) and Second to store
the data in the appropriate allocated arrays.

PMACR1 X 103 Determine which elements are in contact to adjust
matrix storage.
First pass: CSW = 103
Second pass: CSW = 403 : ICCOM = 1; NCEN
= 0; NUMELC = 0.
If NUMELC ¿ 0 after second pass then:
Third pass: CSW = 403 : ICCOM = 2;NUMELC
= 0.
If optimization of profile or Lagrange multiplier
then:
Fourth pass: CSW = 403 : ICCOM = 3;
For sparse solver another pass is required:
Last pass: CSW = 403 : ICCOM = 4.

PMACR5 X 200 Called when command ‘SHOW CONT’ given.

Table 2.4: Existing calls to contact drivers (Part 1)

CHAPTER 2. CONTACT DRIVER: THE CELMTNN SUBPROGRAM 36

• N.B. The following values of CSW are not processed: CSW = 0, 4, 5, 7. Any
others not given above let the element decide: IFCHIS = F; call sets CSW =
ISW.

• Any omitions may be checked in file ‘contact.f’ in the /contact/main directory.

• An ‘X’ in the second column indicates that the contact driver will be called
with the CSW set to the value indicated. If not, ‘description’ gives CSW the
‘value’ in the ‘call contact (value)’ indicated.

The CSW values which MUST be in the CELMTnn driver:

• CSW = 0 : Change default names ‘cel1’ to ‘ce20’ to user defined name. Inset
statements below:

include ’umac1’

logical pcomp

integer typ

...

if(csw.eq.0) then

if(pcomp(uct,’celn’,4)) then

uct = ’user_name’ ! 4-characters

endif

where n is the number of the contact element (i.e., the number after CELMT

without the zero) and ’celn’ is given as ’cel1’ to ’ce20’ depending on the
n value.

• CSW = 1 : Set variable once to .false. (Note it can be set true at CSW =
400). Define all possible history variables (DEFHVAR).

• CSW = 14 : Initialize any non-zero history variables.

• CSW = 3 : Compute tangent and residual – must finish with call to routine
CONSTASS.

• CSW = 6 : Compute residual – must finish with call to routine CONSTASS.
(same for CSW = 206).

CHAPTER 2. CONTACT DRIVER: THE CELMTNN SUBPROGRAM 37

• CSW = 103 : Do search for active contact elements. For some cases it may
be best to do little here and do most in 403. I think you should be able
to use the statement structure in file CNTS2D.F to do the search (except
for GEOPAR’s). In particular, the routine GLOSCLN and MASTSEG should
work for the 3-d case (Note you must then have the same values for the ww1(1),
ww1(2) and ww1(3) in your DEFHVAR routine) ch.(p1(1)) is the number of
the master facet for the current slave node; ch.(p1(2)) is the number of the
closest local node; and ch.(p1(3)) is an indicator on what may be happening
near an intersection between two facets (when the search cannot make up its
mind which should be used). Generally if the output is not 1 (unity) one
should use both facets and do a corner condition (I think!).

• CSW = 304 : Do search to find active contact elements. Same details as for
CSW = 103 this form is used when the command sequence is

LOOP,check,no_ck

CONTact CHECk [call contact(304)]

LOOP,newton,no_nt

TANG,,1 (or UTAN,,1)

NEXT,newton

NEXT,check

instead of just

LOOP,newton,no_nt

TANG,,1 (or UTAN,,1) [call contact(103)]

NEXT,newton

(which should check state contact each iteration) and generally leads to more
robust performance.

When the form for CSW = 304 is coded the flag IFISTGN (located in common
C CONTAC.H must be checked in the CSW = 103 portion. If it is false no contact
search should be performed (however, the location of the contact position on
the currently active master should be recomputed); if the value is true then the
full check should be made. Careful attention to the details in coding these two
values of CSW must be taken to ensure good performance overall. (As a side
note, the standard features in the three types of contact elements currently in
the program do not perform correctly for both algorithms.)

CHAPTER 2. CONTACT DRIVER: THE CELMTNN SUBPROGRAM 38

• CSW = 313 : Activate the history variables which INPUT says are needed
(ACTHVAR).

• CSW = 403 : Set list of elements which will be active in next solution. Called
when CSW = 103, but to work for all solution options (e.g., profile or sparse)
the call to MODPROF must be given when CSW = 403.

Optional CSW which may be good to implement:

• 10 : Do augmented update. Check flag: IFAUGM ¿ 0. When true do aug-
mented update on the contact force: Fn|aug < − − Fn|aug + kn ∗ gapn N.B.
When augmenting is done one MUST check on the sign of Fn to determine
when contact is made. The value of the gapn can only be used to check if the
gap is really open and no contact has ever occurred. Also, it will be necessary
to monitor the gapn to detect an initial contact (i.e., when Fn is zero the solu-
tion will run until the gapn penetrates and then one introduces the ‘penalty’
solution to prevent further penetration. Once this has happened (i.e., the
value of Fn|aug will be zero) the computation of the force Fn will be done as
Fn = Fn|aug + kn ∗ gapn and then check conditions on the state of contact.
One does this because at convergence gapn−− > 0 (and may change sign due
to roundoff in computing the zero!).

• 204 : May want to output some values for history variables which can be useful
for a ‘user’ to know. (or maybe for debugging).

• 305 : Plot of the slideline surfaces. This helps to ensure date has been input.
You should be able to use the statements below:

elseif(csw.eq.305) then

call c2geoplt(ix1,ix2,2,6) ! 2 = ix1 , 6 = ix2 colors

elseif(csw.eq.....

2.5.1 Lagrange multiplier constraints

One solution option within the PAIR command if LAGM. This option permits the
imposition of constraints using a Lagrange multiplier method. For this option to
function correctly, users must check the solution flag IFSOLM. Values of the flag for

CHAPTER 2. CONTACT DRIVER: THE CELMTNN SUBPROGRAM 39

a penalty solution are set to unity (1) and for a Lagrange multiplier method to two
(2).

For a Lagrange multiplier to be properly handled users should have the following
options (in addition to or modified from those above):

• In the definition of history variables provisions must be made to store the val-
ues of all the Lagrange multipliers in each element. These should be activated
when IFSOLM is two (2).

• For CSW = 3: Assembly should be performed according to:

if (ifsolm.eq.1) then

call constass(ixl,ida,nnod,ndof,ilm, 0, 0,size,s,r)

elseif(ifsolm.eq.2) then

call constass(ixl,ida,nnod,ndof,ilm,lnod,nlag,size,s,r)

endif

where IXL is an array storing the NNOD nodal values which are active in the
current element; IAD is an NDOF array defining the degrees of freedom to be
assembled; ILM is a list of LNOD nodes to which Lagrange multipliers are asso-
ciated (N.B. There is no scheme to associate them to a contact element); and
NLAG is the number of multipliers at each node (all nodes are assumed to have
the same number within the driver elements); SIZE is the first dimension of
the tangent stiffness array S; and R is the residual vector.

A similar assembly scheme must be included for residual calculations computed
when CSW = 6 or 206.

• For CSW = 403: The program must include a call to the routines which perform
calculation of the profile. These are given by:

if (ifsolm.eq.1) then

call modprof(ixl,ida,nnod,ndof)

elseif(ifsolm.eq.2) then

call modprof(ixl,ida,nnod,ndof,ilm,lnod,nlag)

endif

where the parameters are identical to those described for the call to the
CONSTASS subprogram.

CHAPTER 2. CONTACT DRIVER: THE CELMTNN SUBPROGRAM 40

• For CSW = 314: Updates of the Lagrange multipliers should be performed
using the following call

if(contact_active) then

call getlagm(ilm,lnod,nlag,ch2(p1(.),kset))

else

ch2(p1(.),kset) <-- zero

endif

Here the CH2(p1(.),kset) are the history variables for the current time (there
must be LNOD*NLAG values available. They should be set to zero whenever the
element is inactive.

The actual calculations for all the operations necessary to insert the multiplier
equations into the profile are carried out by the main program CONTACT and the sub-
programs called above. Operations performed by each user are merely the building
of the node lists IXL and ILM together with their sizes.

CHAPTER 2. CONTACT DRIVER: THE CELMTNN SUBPROGRAM 41

Calling CSW Description of action to be performed
Routine Value in contact driver routine.
PMACR3 X 203 Executed on command ‘OPTI’ profile. CSW =

103
First pass: CSW = 103
Second pass: CSW = 403 : ICCOM = 1; NCEN
= 0; NUMELC = 0.
Third pass: CSW = 403 : ICCOM = 2;NUMELC
= 0.

PMACR1 X 204 Called when ‘STRE,CONT’ given to output any
contact ”stress” values.

PTIMPL X 206 Called to set ‘cpl(*)’ array values for any contact
time history values. Activated by ‘CONT,N1,N2’
after a ‘TPLO’t command.

PCONTR 300 Start of new problem. Program sets flags IFCT =
F; IFDB = F; LAGRM = F.

AUTBAC X 301 Set values to start a time step (‘TIME’) This call
occurs during an auto time step. Generally not
necessary to do anything.

PMACR2 X 301 Set values to start a time step (‘TIME’) Generally
not necessary to do anything.

AUTBAC X 302 Reset history data to start values (‘BACK’). Gen-
erally not necessary to do anything.

OUTARY 303 Called to ‘dump’ values to screen on a ‘SHOW XX:
XX = C0, CH, CM, ICS, HIC’.

PMACR3 X 304 Called on ‘CONT,CHEC’k or ‘CONT,NOCH’eck
solution command. IF ‘CHEC’ flag set to
IFCHIST = T; if ‘NOCH’ set to F before call to
contact element driver.

PPLTF X 305 Called on: PLOT,PAIR,k1,k2,k3 command.
RESTRT 306 Called on ‘REST’art solution command after all

data has been read.
RESTRT 307 Called on ‘SAVE’ solution command after all data

has been written.
PPLTF X 308 Called on: PLOT,CVAR,k1,k2,k3 command.

First pass: CSW = 308: Determine min/max.
Second pass CSW = 408. Do plot.

Table 2.5: Existing calls to contact drivers (Part 2)

CHAPTER 2. CONTACT DRIVER: THE CELMTNN SUBPROGRAM 42

Calling CSW Description of action to be performed
Routine Value in contact driver routine.
PMACR3 309 Called on ‘CONT,ON’ or ‘CONT,OFF’ solution

command. For ‘ON’ set flag IFCT = T; if ‘OFF’
set flag F.

PMACR3 X 310 Called on ‘CONT,PENA’ or ‘CONT,FRIC’ solu-
tion command. Command is: CONT XXXX N1
V1 V2. IF XXXX = PENA, N1 is pair number,
CVALUE(1) = V1; CVALUE(2) = V2. IF XXXX
= FRIC: Flags set: IFFRON = T; and IFCHIST
= F. IF XXXX = NOFR: Flags set: IFFRON =
F; and IFCHIST = F.

PCONTR 312 Called after a ‘TIE’ to reset any eliminated node
numbers on the contact facet data.

PCONTR X 313 Called to ACTIVATE history variables. Users de-
fine all active history variables.
First pass: CSW = 313: Use ACTHVAR routine.
Second pass: CSW = 400: Set ‘once’ true.

UPDATE X 314 Perform any updates on history data. Called af-
ter a ‘SOLV’, ‘TANG,,1’ or ‘UTAN’,,1. Use for
updates on any contact solution variables. For ex-
ample, Lagrange multipliers.

Table 2.6: Existing calls to contact drivers (Part 3)

Calling CSW Description of action to be performed
Routine Value in contact driver routine.

X 400 From CSW = 313. Used to avoid mult calls.
X 403 From CSW = 103. Users to determine active equa-

tions and make a call to ‘modprof’ or ‘modprofl’
408 From CSW = 308. Do actual plotting for hist vari-

ables.

Table 2.7: Indirect calls to contact drivers

Bibliography

[1] O.C. Zienkiewicz and R.L. Taylor. The Finite Element Method: Solid Mechan-
ics, volume 2. Butterworth-Heinemann, Oxford, 5th edition, 2000.

[2] S.K. Chan and I.S. Tuba. A finite element method for contact problems of solid
bodies - Part I. Theory and validation. Int. J. Mech. Sci., 13:615–625, 1971.

[3] S.K. Chan and I.S. Tuba. A finite element method for contact problems of solid
bodies - Part II. Application to turbine blade fastenings. Int. J. Mech. Sci.,
13:627–639, 1971.

[4] T.F. Conry and A. Seireg. A mathematical programming method for design of
elastic bodies in contact. J. Appl. Mech., 38:387–392, 1971.

[5] J.J. Kalker and Y. van Randen. A minimum principle for frictionless elastic
contact with application to non-Hertzian half-space contact problems. J. Engr.
Math., 6:193–206, 1972.

[6] A. Francavilla and O.C. Zienkiewicz. A note on numerical computation of elastic
contact problems. International Journal for Numerical Methods in Engineering,
9:913–924, 1975.

[7] T.J.R. Hughes, R.L. Taylor, J.L. Sackman, A. Curnier, and W. Kanok-
nukulchai. A finite element method for a class of contact-impact problems.
Computer Methods in Applied Mechanics and Engineering, 8:249–276, 1976.

[8] J.T. Oden. Exterior penalty methods for contact problems in elasticity. In K.-J.
Bathe, E. Stein, and W. Wunderlich, editors, Europe-US Workshop: Nonlinear
Finite Element Analysis in Structural Mechanics, Berlin, 1980. Springer.

43

BIBLIOGRAPHY 44

[9] K.-J. Bathe and A.B. Chaudhary. A solution method for planar and axisym-
metric contact problems. International Journal for Numerical Methods in En-
gineering, 21:65–88, 1985.

[10] J.O. Hallquist, G.L. Goudreau, and D.J. Benson. Sliding interfaces with
contact-impact in large scale Lagrangian computations. Computer Methods
in Applied Mechanics and Engineering, 51:107–137, 1985.

[11] J.A. Landers and R.L. Taylor. An augmented Lagrangian formulation for the
finite element solution of contact problems. Technical Report SESM 85/09,
University of California, Berkeley, 1985.

[12] J.C. Simo, P. Wriggers, and R.L. Taylor. A perturbed Lagrangian formula-
tion for the finite element solution of contact problems. Computer Methods in
Applied Mechanics and Engineering, 50:163–180, 1985.

[13] P. Wriggers and J.C. Simo. A note on tangent stiffness for fully nonlinear
contact problems. Comm. Appl. Num. Meth., 1:199–203, 1985.

[14] A.B. Chaudhary and K.-J. Bathe. A solution method for static and dynamic
analysis of three-dimensional contact problems with friction. Computers and
Structures, 24:855–873, 1986.

[15] J.C. Simo, P. Wriggers, K.H. Schweizerhof, and R.L Taylor. Finite deformation
post-buckling analysis involving inelasticity and contact constraints. Interna-
tional Journal for Numerical Methods in Engineering, 23:779–800, 1986.

[16] A. Curnier and P. Alart. A generalized Newton method for contact problems
with friction. Journal de Mecanique Theorique et Appliquee, 7:67–82, 1988.

[17] J.-W. Ju and R.L. Taylor. A perturbed Lagrangian formulation for the finite
element solution of nonlinear frictional contact problems. Journal de Mecanique
Theorique et Appliquee, 7(Supplement, 1):1–14, 1988.

[18] J.J. Kalker. Contact mechanical algorithms. Comm. Appl. Num. Meth., 4:25–
32, 1988.

[19] N. Kikuchi and J.T. Oden. Contact Problems in Elasticity: A Study of Varia-
tional Inequalities and Finite Element Methods, volume 8. SIAM, Philadelphia,
1988.

BIBLIOGRAPHY 45

[20] H. Parisch. A consistent tangent stiffness matrix for three dimensional non-
linear contact analysis. International Journal for Numerical Methods in Engi-
neering, 28:1803–1812, 1989.

[21] D.J. Benson and J.O. Hallquist. A single surface contact algorithm for the post-
buckling analysis of shell structures. Computer Methods in Applied Mechanics
and Engineering, 78:141–163, 1990.

[22] P. Wriggers, T. Vu Van, and E. Stein. Finite element formulation of large
deformation impact-contact problems with friction. Computers and Structures,
37:319–331, 1990.

[23] P. Alart and A. Curnier. A mixed formulation for frictional contact problems
prone to Newton like solution methods. Computer Methods in Applied Mechan-
ics and Engineering, 92:353–375, 1991.

[24] T. Belytschko and M.O. Neal. Contact-impact by the pinball algorithm with
penalty and Lagrangian methods. International Journal for Numerical Methods
in Engineering, 31:547–572, 1991.

[25] N.J. Carpenter, R.L. Taylor, and M.G. Katona. Lagrange constraints for tran-
sient finite element surface contact. International Journal for Numerical Meth-
ods in Engineering, 32:103–128, 1991.

[26] P. Papadopoulos. On the Finite Element Solution of General Contact Problems.
Ph.D dissertation, Department of Civil Engineering, University of California at
Berkeley, Berkeley, USA, 1991.

[27] R.L. Taylor and P. Papadopoulos. A patch test for contact problems in two
dimensions. In P. Wriggers and W. Wagner, editors, Nonlinear Computational
Mechanics, pages 690–702. Springer, Berlin, 1991.

[28] A. Klarbring and G. Bjorkman. Solution of large displacement contact problems
with friction using Newton’s method for generalised equations. International
Journal for Numerical Methods in Engineering, 34:249–269, 1992.

[29] J.C. Simo and T.A. Laursen. An augmented Lagrangian treatment of contact
problems involving friction. Computers and Structures, 42:97–116, 1992.

[30] R.L. Taylor and P. Papadopoulos. On a finite element method for dynamic
contact-impact problems. International Journal for Numerical Methods in En-
gineering, 36:2123–2139, 1993.

BIBLIOGRAPHY 46

[31] Z. Zhong and J. Mackerle. Static contact problems – a review. Engineering
Computations, 9:3–37, 1992.

[32] J.-H. Heegaard and A. Curnier. An augmented Lagrangian method for discrete
large-slip contact problems. International Journal for Numerical Methods in
Engineering, 36:569–593, 1993.

[33] T.A. Laursen and J.C. Simo. A continuum-based finite element formulation for
the implicit solution of multibody, large-deformation, frictional, contact prob-
lems. International Journal for Numerical Methods in Engineering, 36:3451–
3486, 1993.

[34] T.A. Laursen and J.C. Simo. Algorithmic symmetrization of Coulomb fric-
tional problems using augmented Lagrangians. Computer Methods in Applied
Mechanics and Engineering, 108:133–146, 1993.

[35] P. Wriggers and G. Zavarise. Application of augmented Lagrangian techniques
for non-linear constitutive laws in contact interfaces. Communications in Nu-
merical Methods in Engineering, 9:813–824, 1993.

[36] T.A. Laursen and V.G. Oancea. Automation and assessment of augmented
lagrangian algorithms for frictional contact problems. J. Appl. Mech, 61:956–
963, 1994.

[37] T.A. Laursen and S. Govindjee. A note on the treatment of frictionless contact
between non-smooth surfaces in fully non-linear problems. Communications in
Numerical Methods in Engineering, 10:869–878, 1994.

[38] P. Papadopoulos and R.L. Taylor. A mixed formulation for the finite element
solution of contact problems. Computer Methods in Applied Mechanics and
Engineering, 94:373–389, 1992.

[39] P. Wriggers and C. Miehe. Contact constraints within coupled thermomechani-
cal analysis – A finite element model. Computer Methods in Applied Mechanics
and Engineering, 113(3–4):301–319, 1994.

[40] P. Papadopoulos, R.E. Jones, and J.M. Solberg. A novel finite element formu-
lation for frictionless contact problems. International Journal for Numerical
Methods in Engineering, 38:2603–2617, 1995.

BIBLIOGRAPHY 47

[41] F. Auricchio and E. Sacco. Augmented Lagrangian finite elements for plate
contact problems. International Journal for Numerical Methods in Engineering,
39:4141–4158, 1996.

[42] A. Heege and P. Alart. A frictional contact element for strongly curved contact
problems. International Journal for Numerical Methods in Engineering, 39:165–
184, 1996.

[43] C. Agelet de Saracibar. A new frictional time integration algorithm for large
slip multi-body frictional contact problems. Computer Methods in Applied Me-
chanics and Engineering, 142:303–334, 1997.

[44] K.-J. Bathe and P.A. Bouzinov. On the constraint function method for contact
problems. Computers and Structures, 64(5/6):1069–1085, 1997.

[45] T.A. Laursen and V. Chawla. Design of energy conserving algorithms for fric-
tionless dynamic contact problems. International Journal for Numerical Meth-
ods in Engineering, 40:863–886, 1997.

[46] W. Ling and H.K. Stolarski. A contact algorithm for problems involving quadri-
lateral approximation of surfaces. Computers and Structures, 63:963–975, 1997.

[47] W. Ling and H.K. Stolarski. On elasto-plastic finite element analysis of some
frictional contact problems with large sliding. Engineering Computations,
14:558–580, 1997.

[48] C. Agelet de Saracibar. Numerical analysis of coupled thermomechanical fric-
tional contact. Computational model and applications. Archives of Computa-
tional Methods in Engineering, 5(3):243–301, 1998.

[49] E. Bittencourt and G.J. Creus. Finite element analysis of three-dimensional
contact and impact in large deformation problems. Computers and Structures,
69:219–234, 1998.

[50] M. Cuomo and G. Ventura. Complementary energy approach to contact prob-
lems based on consistent augmented Lagrangian formulation. Mathematical &
Computer Modelling, 28:185–204, 1998.

[51] F. Jourdan, P. Alart, and M. Jean. A gauss-seidel like algorithm to solve
frictional contact problems. Computer Methods in Applied Mechanics and En-
gineering, 155:31–47, 1998.

BIBLIOGRAPHY 48

[52] P. Papadopoulos and J.M. Solberg. A Lagrange multiplier method for the finite
element solution of frictionless contact problems. Mathematical & Computer
Modelling, 28:373–384, 1998.

[53] E.G. Petocz. Formulation and analysis of stable time-stepping algorithms for
contact problems. Ph.D thesis, Department of Mechanical Engineering, Stanford
University, Stanford, California, 1998.

[54] J.M. Solberg and P. Papadopoulos. A finite element method for contact/impact.
Finite Elements in Analysis and Design, 30:297–311, 1998.

[55] C. Kane, E.A. Repetto, M. Ortiz, and J.E. Marsden. Finite element analysis of
non smooth contact. Computer Methods in Applied Mechanics and Engineering,
180:1–26, 1999.

[56] I. Paczelt, B.A. Szabo, and T. Szabo. Solution of contact problem using the
hp-version of the finite element method. Computers & Mathematics with Ap-
plications, 38:49–69, 1999.

[57] G. Pietrzak and A. Curnier. Large deformation frictional contact mechanics:
continuum formulation and augmented Lagrangian treatment. Computer Meth-
ods in Applied Mechanics and Engineering, 177:351–381, 1999.

[58] G. Zavarise and P. Wriggers. A superlinear convergent augmented Lagrangian
procedure for contact problems. Engineering Computations, 16:88–119, 1999.

	1 Introduction
	1.1 Description of basic characteristics
	1.1.1 Surface definition
	1.1.2 Restrictions on input data

	1.2 Contact input commands
	1.2.1 Command structure

	1.3 Description of subprogram structure
	1.3.1 Sizing of arrays
	1.3.2 Contact command control table

	2 Contact driver: The CELMTnn subprogram
	2.1 Control data tables
	2.2 Pair data: Surface arrays
	2.3 Material data
	2.4 History data management and assignment
	2.5 Options in driver program
	2.5.1 Lagrange multiplier constraints

