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Chapter 1

INTRODUCTION

1.1 General features

This manual describes features for the parallel version of the general purpose Finite
Element Analysis Program (FEAP). It is assumed that the reader of this manual is
familiar with the use of the serial version of FEAP as described in the basic user
manual.[1] It is also assumed that the reader of this manual is familiar with the finite
element method as describe in standard reference books on the subject (e.g., The Finite
Element Method, 7th edition, by O.C. Zienkiewicz, R.L. Taylor, et al. [2, 3, 4]).

The current version of the parallel code modifies the serial version of FEAP to in-
terface to the PETSc library system (version 3.13.2) available from Argonne National
Laboratories.[5, 6] In addition the METIS[7] and ParMETIS[8] libraries are used to parti-
tion each mesh for parallel solution. The present parallel version of FEAP may only be
used in a UNIX/Linux (including Mac OS X) environment and includes an integrated
set of modules to perform:

1. Input of data describing a finite element model;

2. An interface to METIS[7] to perform a graph partitioning of the mesh nodes. A
stand alone module exists to also use ParMETIS[8] to perform the graph parti-
tioning for very large problems;

3. An interface to PETSc[5, 6, 9] to perform the parallel solution steps;

4. Construction of solution algorithms to address a wide range of applications; and

5. Graphical and numerical output of solution results.

1
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1.2 Problem solution

The solution of a problem using the parallel versions starts from a standard input
file for a serial solution. This file must contain all the data necessary to define nodal
coordinate, element connection, boundary condition codes, loading conditions, and
material property data. That is, if it were possible, this file must be capable of solving
the problem using the serial version. However, at this stage of problem solving the only
solution commands included in the file are those necessary to partition the problem for
the number of processors to be used in the parallel solution steps.

1.3 Graph partitioning

To use the parallel version of FEAP it is first necessary to construct a standard input
file for the serial version of FEAP. Preparation of this file is described in the FEAP
User Manual.[1]

1.3.1 METIS version

After the file is constructed and its validity checked, a serial execution of the parallel
FEAP program built in the parfeap directory may be performed. Using the GRAPh

solution command statement followed by an OUTDomains solution command will gen-
erate the needed parallel execution input files. To use this option a basic form for the
input file is given as:

FEAP * * Start record and title

...

Control and mesh description data

...

END mesh

<Initial condition data for transient problems>

BATCh

GRAPh node numd ! METIS partitions ’numd’ nodal domains

OUTDomains ! Creates ’numd’ partitioned meshes

END batch

...

STOP
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where the node on the GRAPh command is optional. Options for OUTDomains are ex-
plained below in Sect. 1.3.3 Using these commands, METIS [7] will split a problem
into numd partitions by partitioning the node graph and output numd input files for a
subsequent parallel solution of the problem.

The initial condition data is only required for transient solutions in which inital data
is non-zero. Otherwise this data is omitted. The form of the initial condition data is
described in the basic User manual.[1]

For efficiency of assembly, it is necessary to pre-allocate matrix memory requirements.
In PETSc, there are two basic matrix formats: AIJ and BAIJ. By default FEAP
stores the pre-allocation information in the partitioned input files in the AIJ format
when using OUTDomains. This format is compatible with most of PETSc’s solver op-
tions. However, if one wishes to use a solver that requires (or benefits) from the BAIJ
(blocked) format, then one can issue the command

OUTDomains,BAIJ

The block size can optionally be controlled by:

OUTDomains,BAIJ,,<nsbk>

The block size nsbk can be any (integer) factor of ndf and defaults to ndf if not
specified. Note that in the BAIJ format, degrees of freedom with Dirichlet boundary
are included in the matrix assembly. Issuing OUTDomains,AIJ forces AIJ format. In
this format it is also possible to include the degrees of freedom with Dirichlet boundary
conditions in the matrix assembly (as is required for certain PETSc solvers). This is
done by setting the boundary equation flag to unity:

OUTDomains,AIJ,1,<nsbk>

In this format, one can optionally provide PETSc with a hint to the equation block
size nsbk. As with BAIJ, this value defaults to ndf if not specified.

1.3.2 ParMETIS: Parallel graph partitioning

A stand alone parallel graph partitioner also exists.1 The parallel partitioner, partition
(located in the $(FEAPHOME8 4)/parfeap/partition subdirectory), uses ParMETIS [8]

to perform the construction of the nodal split. To use this program it is necessary to
have a FEAP input file that contains all the nodal coordinate and all the element
connection records. That is, there must be a file with the form:

1This is only needed for problems so large that they can not be partitioned with METIS.
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FEAP * * Start record and title

Control record

COORdinates

All nodal coordinate records

...

ELEMent

All element connection records

...

remaining mesh statemnts

...

END mesh

The flat form for an input file may be created from any FEAP input file using the
solution command:

OUTMesh

This creates an input file with the same name and the extender ”.rev”. If a TIE

mesh manipulation command is used the output mesh will remove unused nodes and
renumber the node numbers.

Once the flat input file exists a parallel partitioning is performed by executing the
command

mpirun -n nump partition numd Ifile

where nump is the number of processors that ParMETIS uses, numd is the number of
mesh partitions to create and Ifile is the name of the flat FEAP input file. For
an input file originally named Ifile, the program creates a graph file with the name
graph.file. The graph file contains the following information:

1. The processor assignment for each node (numnp)

2. The pointer array for the nodal graph (numnp+1)

3. The adjacency lists for the nodal graph

To create the partitioned mesh input files the flat input file is used again (in the
same directory containing the graph.file) in a serial execution of the parallel FEAP
together with the solution commands
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GRAPh FILE

OUTDomains

See the next section for a discussion of possible options for OUTDomains.

It is usually also possible to also create the graph.file in parallel without separately
running partition from the command line by using the command set

OUTMesh

GRAPh PARTition numd

OUTDomains

where numd is the number of domains to create. For this to work the program mpirun

must be in your path. Here, the parameter nump is equal to numd.2 The use of the
command OUTMesh is required to ensure that a flat input file is available and after
execution it is destroyed.

1.3.3 Structure of parallel meshes

It is assumed that numd represents the number of processors to be used in the parallel
solution. Each partition is assigned numpn nodes. The number can differ slightly among
the various partitions but is approximately the total number of nodes in the problem
divided by numd. In the current release, no weights are assigned to the node or the node
graph edges to reflect possible differences in solution or communication effort. Each
partitioned input file also contains ghost nodes for effecting the evaluation of element
residuals. The sum of the nodes in a partition (numpn) and its ghost nodes defines the
total number of nodes in each partitioned data file (i.e., the total number of nodes,
numnp, in each mesh partition).

In the parallel solution the global equations are numbered sequentially from 1 to the
total number of equations in the problem (numteq). The nodes in partition 1 are
associated with the first set of equations, the nodes in partition 2 the second set, etc.
For each partition, the stiffness and/or the mass matrix is also partitioned and each
partition matrix has two parts: (a) a diagonal block for all the nodes in the partition
(i.e., numpn nodes) and, (b) off diagonal blocks associated with the ghost nodes as
shown in Figure 1.1. In solving a set of linear equations

K du = R

associated with an implicit solution step, the solution vector du and the residual R
are also split according to each partition. The residual for each partition contains only

2Use of this command set requires the path to the location of the partition program to be set in
the pstart.F file located in the parfeap directory.
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the terms associated with the equations of the partition. The solution vector, however,
has both the terms associated with the partition as well as those associated with the
equations of its ghost nodes. In this way, it is only necessary to exchange values for the
displacement quantities associated with the respective ghost nodes after each solution
iteration. This optimizes the communication costs.

In the next chapter we describe how the input data files for each partition are organized.

K11 K1g Processor 1

K2g K22 K2g Processor 2

K33K3g K3g Processor 3

Figure 1.1: Structure of stiffness matrix in partitioned equations.
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Input files for parallel solution

After using the METIS or the ParMETIS partitioning algorithm on the total problem
(for example, that given by say the mesh file Ifilename) FEAP produces numd files
for the partitions and these serve as input for the parallel solution. Each new input
file is named Ifilename 0001, etc. up to the number of partitions specified (i.e., numd
partitions).

The first part of each file contains a standard FEAP input file for the nodes and
elements belonging to the partition. This is followed by a set of commands that begin
with DOMAin and end with END DOMAin. All of the data contained between the DOMAin

and END DOMAin is produced automatically by FEAP when using OUTDomains.

The file structure for a parallel solution is shown in Figure 2.1 and is provided only to
describe how the necessary data is given to each partition. No changes are allowed to
be made to these statements.

2.1 Basic structure of parallel file

Each part of the data following the END MESH statement performs a specific task in the
parallel solution. It is important that the data not be altered in any way as this can
adversely affect the solution process. Below we describe the role each data set plays
during the solution.

2.1.1 DOMAIN - Domain description

The DOMAIN data defines the number of nodes belonging to this partition (numpn), the
number of total nodes in the problem (numtn) and the number of total equations in the

7
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FEAP * * Start record and title
...

Control and mesh description data for a partition
...

END MESH

DOMAin
numpn numtn numteq

FORMat <AIJ,BAIJ>

<BCIN BLOCked nsbk> (Required for BAIJ)

LOCAl to GLOBal node numbers
...

GETData POINter nget_pnt
...

GETData VALUes nget_val
...

SENDdata POINter nsend_pnt
...

SENDdata VALUes nsend_val
...

MATRix storage
...

<EQUAtion> numbers (If BCIN is not present)
...

END DOMAIN

BATCh ! Optional initial conditions
INITial DISPlacements

END BATCH
... List of initial conditions

INCLude solve.filename

STOP

Figure 2.1: Input file structure for parallel solution.
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problem (numteq). Note that the number of nodes in the partition (numpn) is always
less or equal to the number of nodes given on the control record (numnp) due to the
presence of the ghost nodes. The sum over all partitions of the number of nodes in
each partition (numpn) is equal to the total number of nodes in the problem (numtn).

2.1.2 FORMat - Format of matrix equations

This data set defines the format assumed for the matrix pre-allocation data as well as
the local to global node number data. The valid options are AIJ and BAIJ; AIJ is the
default.

2.1.3 BCIN BLOCked - Boundary equations in assembly

This data set is optional. For matrix formats that include the degrees of freedom
associated with Dirichlet boundary conditions in the matrix assembly, this command
will be present. It takes a single numerical parameter indicating the blocking size which
is always an (integer) factor of ndf.

2.1.4 LOCal to GLOBal node numbering

Each record in this set defines three values: (1) a local node number in the partition;
(2) the global node associated with the local number; and (3) the global equation block
number associated with the local node. The first numpn records in the set are the nodes
associated with the current partition the remaining records with the ghost nodes.

2.1.5 GETData and SENDdata - Ghost node get and send

The current partition retrieves (GETData) the solution values for its ghost nodes from
other partitions. The data is divided into two parts: (1) A POINTER part which defines
the number of values to obtain from each partition and (2) The VALUes list of local
node numbers needing values. The pointer data is given as

GETData POINter nparts

np_1

np_2

...

np_nparts
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where np i defines the number of values to get from partition-i (note the number should
always be a zero for the current partition). The nodal values list is given as

GETData VALUes nvalue

local_node_1

local_node_2

...

local_node_nvalue

The local node i numbers are grouped so that the first np 1 are obtained from pro-
cessor 1, the next np 2 from processor 2, etc. The local node 1 is the number of a
local ghost node to be obtained from another processor and may appear only once in
the list of GETData VALUes.

A corresponding pair of lists is given for the data to be sent (SENDdata) to the other
processors. The lists have identical structure to the GETData lists and are given by

SENDdata POINter nparts

np_1

np_2

...

np_nparts

and

SENDdata VALUes nvalue

local_node_1

local_node_2

...

local_node_nvalue

where again the local node i numbers are grouped so that the first np 1 are sent to
processor 1, the next np 2 to processor 2, etc. It is possible for a local node number
to appear more than once in the SENDdata VALUes list as it could be a ghost node for
more than one other partition. np i should be zero for input file Ifilename 000i.

2.1.6 MATRix storage – equation structure

Each equation in the global matrix consists of the number of terms that are associated
with the current partition and the number of terms associated with other partitions.
This information is provided for each equation (or equation block when in BAIJ format)
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by the MATRix storage data set. Each record in the set is given by the global equation
number followed by the number of terms associated with the current partition and then
the number of terms associated with other partitions. The use of this data is critical to
obtain rapid assembly of the global matrices by PETSc. If it is incorrect the assembly
time will be very large compared to the time needed to compute the matrix coefficients
or even solve the equations.

When the matrix format is BAIJ the data is given for each block equation. Thus, the
first nsbk equations are associated with block 1, the second with block 2, etc. The
total number of equations numteq for this form is numtn × nsbk. Here, each record of
the MATRix storage data is given by the global block number, the number of blocks
associated with the current partition and the number of blocks associated with other
partitions.

When the optional BCIN command is present, every node has ndf equations independent
of any boundary conditions. If a degree-of-freedom (DOF) is of displacement type we
assemble a unit value on the diagonal and all off-diagonal entries are zero. That is, the
equations for any DOF a that are fixed will be assembled as:

1 dua = Ra = dū

where dū denotes a specified valued for the solution. In some cases, this can improve the
efficiency of the solver and for some solvers it is required, e.g. the Prometheus multi-
grid pre-conditioner and GAMG the geometric-algebraic multi-grid pre-conditioner.

2.1.7 EQUAtion number data

This data set is not present when the boundary equations are assembled (BCIN). How-
ever, when the equations are in AIJ format and BCIN has not been set, then it is
necessary to fully describe the equation numbering associated with each node in the
partition. This is provided by the EQUAtion number data set. The set consists of
numnp records which contain the local node number followed by the global equation
number for every degree-of-freedom associated with the node. If a degree-of-freedom
is restrained (i.e., of displacement or Dirichlet type) the equation is not active and a
zero appears. This form results in fewer unknown values but may not be used with
any equation solution requiring all equations to be present (in particular, Prometheus
and GAMG).

2.1.8 END DOMAIN record

The parallel domain data is terminated by the END DOMAIN record. It is followed by
the solution commands.
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2.1.9 Initial conditions

Following the domain data the list of any initial conditions applied to a transient
problem will appear. The initial conditions must be fully specified in the original input
data file.

Initial conditions for displacements will appear as shown in Fig. 2.1. However, if rate
type conditions are applied the data will appear as

BATCh ! Initial rate conditions

TRANsient type c1 c2 c3

INITial RATE

END BATCH

.... List of rate conditions

where type is one of the standard feap transient solution algorithms and c1,c2,c3 are
the values of the transient solution parameters. For example, if the Newmark method
is used then type will be output as NEWMark and c1,c2 will be the values of the β, γ
Newmark parameters. The final parameter c3 is not used by Newark but appears as
unity.

If both initial displacements and intial rates are specified then both BATCh--END pairs
of data will appear in the domain input file.
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Solution process

Once the parallel input mesh files are created an execution of the parallel version of
feap may be performed using, for example, the command line statement

mpirun -n $NPROC $FEAPHOME8_6/parfeap/feap -ksp_type cg -pc_type jacobi

or the command line statement

mpirun -n $NPROC $FEAPHOME8_6/parfeap/feap -ksp_type cg -pc_type gamg

(for details on using other solvers as well as optional parameters for these choices
see the makefile in the parfeap subdirectory). The parameters setting the number
of processors (NPROC) and the execution path (FEAPHOME8 6) must be defined before
issuing the command. This can be done by setting shell environment variables.

Once parallel FEAP starts, the input file should be set to Ifilename 0001 where
filename is the name of the solution file to be solved. Each processor reads its input
file up to the END DOMAIN statement and then starts processing command language
statements.

In a parallel solution using FEAP the same command language statements must be
provided for each partition. This is accomplished by the statement

INCLude solve.filename

appearing after the END DOMAin statement, where filename is the name of the input
data file with the leading I and the trailing partition number removed. Thus for the file
named Iblock 0001 the command is given as solve.block. All solution commands
are then placed in a file with this name and can include both BATCh and INTEractive

commands. For example a simple solution may be given by the commands

13
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BATCh

PETSc ON

TOL ITER 1.d-07 1.d-08 1.d+20

TANGent,,1

END

INTEractive

placed in the solve.filename file. Note that both batch and interactive modes of
solution are optionally included. Interactive commands need only be entered once and
are sent to other processors automatically. In the subsequent subsections we describe
some of the special commands that control the parallel execution mode of FEAP

3.1 Command language statements

Most of the standard command language statements available in the serial version of
FEAP (see users manual [1]) may be used in the parallel version of feap. New com-
mands are available also that are specifically related to performing a parallel solution.

3.1.1 PETSc Command

The PETSc command is used to activate the parallel solution process. The command

PETSc <ON,OFF>

may be used to turn on and off the parallel execution. It is only required for single
processor solutions and is optional when two or more processors are used in the so-
lution process. When required, it should always be the first solution command. It is
automatically included in the default solve.filename generated by OUTDomains.

The command may also be used with the VIEW parameter to create outputs for the
tangent matrix, solution residual or mass matrix. Thus, use as

PETSc VIEW

MASS

PETSc NOVIew

will create a file named mass.m that contains all the non-zero values of the total mass
matrix. The parameter VIEW turns on output arrays and this remains in effect for all
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commands until the command is given with the NOVIew parameter. The file is created
in a format that may be directly used by MATLAB.[10] This command should only be
used with small problems to verify the correctness of results as large files will result
otherwise.

3.2 Solution of linear equations

The parallel version of FEAP can use most all of the SLES (linear solvers) available
in PETSc as well as the parallel multigrid solver GAMG. This also includes most of
the direct solvers that can optionally be built with PETSc. The actual type of linear
solver used is specified on the mpirun line and several useful examples are contained in
the makefile located in the parfeap directory (see, Sect. 3 above). Once the solution
is initiated the solution of linear equations is performed whenever a TANG,,1 or SOLVe
command is given.

The types of solvers and the associated pre-conditioners tested to date are described
in Table 3.1. This is only a small sampling of the many options available in PETSc.

Solver Preconditioner Matrix format/Notes
CG Jacobi AIJ and BAIJ formats
CG Hypre with Boomerang AIJ format
CG ML/Trilinos AIJ format
CG GAMG AIJ with BCIN format
MINRES Jacobi AIJ and BAIJ formats
GMRES Jacobi AIJ and BAIJ formats
GMRES Block Jacobi Often gives indefinite factor.
GMRES ASM(ILU)
SuperLU (direct) AIJ format (has BLAS conflict on Mac OS

X ≥ 10.7.5)
MUMPS (direct) AIJ format

Table 3.1: Linear solvers and pre-conditioners tested.

The solvers, together with the necessary options for preconditioning are specified on
the mpirun line. For convenience, it is recommended to place these in the provided
makefile and to run them with the make command. Several options are pre-provided
in the distributed makefile.
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3.2.1 Tolerance for iterative equation methods

The basic form of iterative solution for linear equations in PETSc is a Krylov subspace
scheme. These methods terminate their iterations based on assumed tolerances and
can be changed as desired.

Termination tolerances for the solvers are given by either

TOL ITER rtol atol dtol

or

ITER TOL rtol atol dtol

where rtol is the tolerance for the preconditioned equations, atol the tolerance for
the original equations and dtol a value at which divergence is assumed. The default
values are:

rtol = 1.d − 8 ; atol = 1.d − 16 and dtol = 1.d + 16

For many problems it is advisable to check that the actual solution is accurate when
using iterative methods since termination of the iterative solution is performed based
on the rtol value. A check should be performed using the command sequence

TANG,,1

LOOP,,1

FORM

SOLV

NEXT

since the TANG command has significant set up costs, especially for multi-grid methods.
Indeed, for some problems more than one iteration is needed in the loop.

3.2.2 GLIST & GNODE: Output of results with global node
numbers

In normal execution each partition creates its own output file (e.g., Ofilename 0001,
etc.) with printed data given with the local node and element numbers of the proces-
sor’s input data file. In some cases the global node numbers are known and it is desired
to identify which processor to which the node is associated. This may be accomplished
by including a GLISt command in the solution statements along with the list of global
node numbers to be output. The option is restricted to 3 lists, each with a maximum
of 100 nodes. The command sequence is given by:
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BATCh

GLISt,,<1,2,3>

END

list of global node numbers, 8 per record

! blank termination record

The list will be converted by each processor into the local node numbers to be output
using the command

DISP LIST <1,2,3>

The command may also be used with VELOcity, ACCEleration, and STREss; see the
relevant manual pages in the FEAP Users Manual.[1]

It is also possible to directly output the global node number associated with individual
local node numbers using the command statement

DISP GNODe nstart nend ninc

where nstart and nend are global node numbers. This command form also may be
used with VELOcity, ACCEleration, and STREss.

3.3 Eigenproblem solution for modal problems

The computation of the natural modes and frequencies of free vibration of an undamped
linear structural problem requires the solution of the general linear eigenproblem

K Φ = M Φ Λ

In the above K and M are the stiffness and mass matrices, respectively, and Φ and Λ
are the normal modes and frequencies squared. Normally, the constraint

ΦTM Φ = I

is used to scale the eigenvectors. In this case one also obtains the relation

ΦTK Φ = Λ
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3.3.1 Subspace method solutions

The subspace algorithm contained in FEAP has been extended to solve the above
problem in a parallel mode. The use of the subspace algorithm requires a linear solution
of the equations

K x = y

for each vector in the subspace and for each subspace iteration. The parallel subspace
solution is performed using the command set

TANGent

MASS <LUMPed,CONSistent>

PSUBspace <print> nmodes <nadded>

where nmodes is the desired number of modes, nadded is the number of extra vectors
used to accelerate the convergence (default is maximum of nmodes and 8) and print

produces a print of the subspace projections of K and M. The accuracy of the com-
puted eigenvalues is the maximum of 1.d − 12 and the value set by the TOL solution
command. The method may be used with either a lumped or a consistend mass matrix.

If it is desired to extract 10 eigenvectors with 8 added vectors and 20 iterations are
needed to converge to an acceptable error it is necessary to perform 360 solutions of the
linear equations. Thus, for large problems the method will be very time consuming.

3.3.2 Arnoldi/Lanczos method solutions

In order to reduce the computational effort for eigenproblems the Arnoldi/Lanczos
methods implemented in the ARPACK module available from Rice University[11] has
been modified to work with the parallel version of FEAP.

Two modes of the ARPACK solution methods are included in the program:

1. Mode 1: Solves the problem reformed as

M−1/2 K M−1/2 Ψ = Ψ Λ

where
Φ = M−1/2 Ψ

This form is most efficient when the mass matrix is diagonal (lumped) and, thus,
in the current release of parallel FEAP is implemented only for diagonal (lumped)
mass forms. This mode form is specified by the solution command set



CHAPTER 3. SOLUTION PROCESS 19

TANGent

MASS LUMPed

PARPack LUMPed nmodes <maxiters> <eigtol>

where nmodes is the number of desired modes. Optionally, maxiters is the
number of iterations to perform (default is 300) and eigtol the solution tolerance
on eigenvalues (default is the maximum of 1.d − 12 and the values set by the
command TOL).

2. Mode 3: Solves the general linear eigenproblem directly and requires solution of
the linear problem

K x = y

for each iteration. Fewer iterations are normally required than in the subspace
method, however, the method is generally far less efficient than the Mode 1 form
described above. This form is given by the set of commands

TANGent

MASS <LUMPed,CONSistent>

PARPack <SYMMetric> nmodes <maxiters> <eigtol>

Use of the command MASS alone also will employ a consistent mass (or the mass
produced by the quadrature specified).

3.4 Graphics output

During a solution the graphics commands may be given in a standard manner. However,
each processor will open a graphics window and display only the parts that belong to
that processor. Scaling is also done processor by processor unless the PLOT RANGe

command is used to set the range for the plot values.

3.4.1 GPLOt command

An option does exist to collect all the results together and present on a single graphics
window. This option also permits postscript outputs to be constructed and saved in
files. To collect the results together it is necessary to write the results to disk for each
item to be graphically presented. This is accomplished using the GPLOt command.
This command has the options

GPLOt DISPlacement n

GPLOt STREss n

GPLOt PSTRess n
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where n denotes the component of a displacement (DISP), nodal stress (STRE) or prin-
cipal stress (PSTRE). Each use of the command creates a file for each processor with
the form

Gproblem_domain.xyyyy

where problem domain is the name of the problem file for the domain; x is d, s or p

for a displacement, stress or principal stress, respectively; and yyyy is a unique plot
number (it will be between 0001 and 9999).

3.4.2 NDATa command

Once the GPLOt files have been created they may be plotted using a serial execution of
the parallel FEAP program (i.e., using the original pre-partioning step file Ifilename).
The command may be given in INTEractive mode only as one of the options:

Plot > NDATa DISPl n

Plot > NDATa STREss n

Plot > NDATa PSTRess n

where n is the value of yyyy used to write the file.

WARNING: Plots by FEAP use substantial memory and thus this option may not
work for very large problems. One should minimize the number of commands used
during input of the problem description (i.e., remove input commands in the mesh
that create new memory).

3.4.3 Paraview

An alternate scheme for plotting parallel solutions can be achieved by use of the Par-
aview1 system. This is a convenient open source tool that can be used with FEAP.

1See http://www.paraview.org.
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Appendix A

Installation

The installation of the parallel version of FEAP is accomplished after first building
a serial version (see FEAP Installation Manual for instructions to build the serial
version).

A.1 Installing PETSc

In order to build the parallel version it is necessary to have an installed version of
PETSc[5, 6] that includes Metis, and ParMetis[12]. It is further important to install
several of the optional pre-conditioner and solver packages.

In the appropriate “.bash xxx” file it is useful (but not necessary) to insert lines similar
to

export PETSC_DIR=/Users/rlt/Software/petsc-3.13.2

export PETSC_ARCH=gnu-opt

This saves on some typing later on.

The files, manuals, and installation instruction for PETSc may be downloaded from:

http://www.mcs.anl.gov/petsc

However in short, after downloading and unpacking the source file the PETSc libraries
need to be built (and tested). Our typical (non-debugging) installation is performed
as follows:

23
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export PETSC_DIR=/Users/rlt/Software/petsc-3.13.2

export PETSC_ARCH=gnu-opt

cd $PETSC_DIR

./configure --download-{parmetis,superlu_dist,openmpi, \

ml,hypre,metis,mumps,scalapack,blacs} --with-debugging=0

Once the configuration is completed the PETSc library is compiled using:

make PETSC_DIR=/Users/rlt/Software/petsc-3.13.2 PETSC_ARCH=gnu-opt all

and tested using

make PETSC_DIR=/Users/rlt/Software/petsc-3.13.2 PETSC_ARCH=gnu-opt test

This will create a PETSc system that includes Metis, ParMetis, SuperLU, MUMPS,
GAMG, ML/Trilinos, Hypre as well as an MPI environment. (ScaLapack and BLACS
are needed by MUMPS.) Of these only Metis and ParMetis are required – assuming
you already have an MPI environment. Leave off the --with-debugging=0 flag if you
want to build a debugging version. In general it is best to build both a debugging and
non-debugging version.

The above instructions assume use of a bash shell. For other operating systems or
shells see the PETSc documentation at [6]. Not all the listed packages are needed but
these tend to be useful for a wide variety of problem classes.

A.2 Installing parallel FEAP

Optionally one can include the ARPAck modules in the build. To do so, first build the
archive archivelib.a in the directory packages/arpack/archive using the command
make install. Then build the archive parpacklib.a in the directory parfeap/packages/arpack

using the command make install.

With the PETSc libraries available the parallel executable for FEAP is built from the
parfeap subdirectory using the command

make install

If the ARPAck libraries have been built one should edit the makefile to ensure that
they are linked by uncommenting the appropriate lines.
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Solution Command Manual Pages

FEAP has a few options that are used only to solve parallel problems. The commands
are additions to the command language approach in which users write each step using
available commands. The following pages summarize the commands currently added
to the parallel version of FEAP.

25
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DISPlacements FEAP COMMAND INPUT COMMAND MANUAL

disp,gnod,<n1,n2,n3>

Other options of this command are described in the FEAP User Manual. The com-
mand DISPlacement may be used to print the current values of the solution generalized
displacement vector associated with the global node numbers of the original mesh. The
command is given as

disp,gnod,n1,n2,n3

prints out the current solution vector for global nodes n1 to n2 at increments of n3
(default increment = 1). If n2 is not specified only the value of node n1 is output. If
both n1 and n2 are not specified only the first node solution is reported.
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GLISt FEAP COMMAND INPUT COMMAND MANUAL

glist,,n1

<values>

The command GLISt is used to specify lists of global node numbers for output of
nodal values. It is possible to specify up to three different lists where the list number
corresponds to n1 (default = 1). The list of nodes to be output is input with up to
8 values per record. The input terminates when less than 8 values are specified or a
blank record is encountered. No more than 100 items may be placed in any one list.

List outputs are then obtained by specifying the command:

name,list,n1

where name may be DISPlacement,VELOcity,ACCEleration, or STREss and n1 is the desired
list number.

Example:

BATCh

GLISt,,1

END

1,5,8,20

BATCh

DISP,LIST,1

...

END

The global list of nodes is processed to determine the processor and the associated
local node number. Each processor then outputs its active values (if any) and gives
both the local node number in the partition as well as the global node number.
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GPLOt FEAP COMMAND INPUT COMMAND MANUAL

gplo disp n

gplo velo n

gplo acce n

gplo stre n

Use of plot commands during execution of the parallel version of FEAP create the same
number of graphic windows as processors used to solve the problem. Each window
contains only the part of the problem contained on that processor.

The use of the GPLOt command is used to save files containing the results for all nodal
dispacements, velocities, accelerations or stresses in the total problem. The only action
occuring after the use of this command is the creation of a file containing the current
results for the quantity specified. Repeated use of the command creates files with
different names.

These results may be processed by a serial run of the problem using the mesh for the
total problem. To display the nodal values command NDATa is used. See manual page
on NDATa.
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GRAPh FEAP COMMAND INPUT COMMAND MANUAL

grap,,num d

grap node num d

grap file

grap part num d

The use of the GRAPh command activates the interface to the METIS multilevel par-
tioner. The graph partition into num d parts is performed based on a nodal graph. The
nodal partition divides the total number of nodes (i.e., numnp values) into num d nearly
equal parts.

If the GRAPh command is given with the option file the graph data is input from the
file graph.filename where filename is the same as the input file without the leading
I character. The data contained in the graph.filename is created using the stand
alone partitioner program which employs the PARMETIS multilevel partitioner.

It is also possible to execute PARMETIS to perform the partitioning directly during
a mesh input. It is necessary to have a mesh which contains all the nodal coordinate
and element data in the input file. This is accomplished using the command set

OUTMesh

GRAPh PARTition num_d

OUTDomains

where num d is the number of domains to create. The command OUTMesh creates a
file with all the nodal and element data and is destroyed after execution of the GRAPh

command.
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ITERative FEAP COMMAND INPUT COMMAND MANUAL

iter,,,icgit

iter,bpcg,v1,icgit

iter,ppcg,v1,icgit

iter,tol,v1,v2,v3

The ITERative command sets the mode of solution to iterative for the linear algebraic
equations generated by a TANGent. Currently, iterative options exist only for symmetric,
positive definite tangent arrays, consequently the use of the UTANgent command should
be avoided. An iterative solution requires the sparse matrix form of the tangent matrix
to fit within the available memory of the computer.

Serial solutions

In the serial version the solution of the equations is governed by the relative residual for
the problem (i.e., the ratio of the current residual to the first iteration in the current
time step). The tolerance for convergence may be set using the ITER,TOL,v1,v2 option.
The parameter v1 controls the relative residual error given by

(RTR)
1/2
i ≤ v1 (RTR)

1/2
0

and, for implementations using PETSc the parameter v2 controls the absolute residual
error given by

(RTR)
1/2
i ≤ v2

The default for v1 is 1.0d-08 and for v2 is 1.0d-16. By default the maximum number
of iterations allowed is equal to the number of equations to be solved, however, this
may be reduced or increased by specifying a positive value of the paramter icgit.

The symmetric equations are solved by a preconditioned conjugate gradient method.
Without options, the preconditioner is taken as the diagonal of the tangent matrix.
Options exist to use the diagonal nodal blocks (i.e., the ndf × ndf nodal blocks, or
reduced size blocks if displacement boundary conditions are imposed) as the precondi-
tioner. This option is used if the command is given as ITERative,BPCG. Another option
is to use a banded preconditioner where the non-zero profile inside a specified half band
is used. This option is used if the command is given as ITERative,PPCG,v1, where v1 is
the size of the half band to use for the preconditioner.

The iterative solution options currently available are not very effective for poorly con-
ditioned problems. Poor conditioning occurs when the material model is highly non-
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linear (e.g., plasticity); the model has a long thin structure (like a beam); or when
structural elements such as frame, plate, or shell elements are employed. For compact
three dimensional bodies with linear elastic material behavior the iterative solution is
often very effective.

Another option is to solve the equations using a direct method (see, the DIREct com-
mand language manual page).

Parallel solutions

For the parallel version the control of the PETSc preconditioned iterative solvers is
controlled by the command

ITER TOL itol atol dtol

where itol is the tolerance for the preconditioned equations (default 1.d − 08), atol
is the tolerance for the original equations (default 1.d − 16) and dtol is a divergence
protection when the equations do not converge (default 1.d+ 16).
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NDATa FEAP COMMAND INPUT COMMAND MANUAL

ndat disp n

ndat velo n

ndat acce n

ndat stre n

This command is used in a serial execution of parallel FEAP using the mesh for the
total problem. It is necessary for files to be created during a parallel execution using
the GPLOt command (See manual page on GPLOt).

The command is given by

NDATa DISPlacement num

where the parameter num is the number corresponding to the order the DISPlacement

are created. Thus, the command sequence

NDATa DISPlacement 2

NDATa STREss 2

would display the results for the second files created for the displacements and stresses.

Note this command is Plot level command.
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OUTDomains FEAP COMMAND INPUT COMMAND MANUAL

outd,<aij>

outd,aij,1,<bsize>

outd,baij,,<bsize>

The use of the OUTDomains command may only be used after the GRAPh command
partitions the mesh into num d parts (see GRAPh command language page for details).

Using the command OUTDomains,AIJ or OUTDomains,BAIJ creates num d input files
for a subsequent parallel solution in which the matrix format will be created in AIJ or
BAIJ format, respectively; AIJ is the default.

The parameter bsize defines the block size and must be an integer divisor of ndf.
That is if ndf = 6 then bsize may be 1, 2, 3, or 6. By default each block in the
equations has a size ndf. The setting of the block size can significantly reduce the
amount of storage needed to store the sparse coefficient matrix created by TANGent

or UTANgent when a problem has a mix of element types and the matrix is in BAIJ
format. For example if a problem has a large number of solid elements with 3 degrees
of freedom per node and additional frame or shell elements with 6 degrees of freedom
per node, specifying bsize = 3 can save considerable memory. Further the setting of
the block size can improve the rate of convergence of iterative and direct solvers.

The use of the unity flag in OUTDomains,AIJ,1 forces the inclusion of all, even pre-
scribed, degrees of freedom in the matrix assembly for AIJ format. This permits the
use of blocking for AIJ format matrices – something that is in general not possible if
prescribed degrees of freedom are not assembled. This is the default behavior for BAIJ
format matrices.
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PETSc FEAP COMMAND INPUT COMMAND MANUAL

pets

pets on

pets off

pets view

pets noview

The use of the PETSc command activates(on) or deactivates(off) parallel solution op-
tions, respectively. To turn on parallel computing the command may be given in the
simple form: PETSc. When more than one partition is created, i.e., the number of
solution processors is 2 or more, the PETSc option is on by default. The command
must be the first command of the command language program when only 1 processor
is used.

The option PETSc VIEW will result in the creation of debug files containing important
parallel matrices and vectors. The output is in MATLAB sparse format. This option
should only be used for very small problems to check that a formulation produces
correct results (i.e., there is another set of terms to which a comparison is to be made).
The option is turned off using the statement PETSc NOVIew. The default is NOVIew.
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STREss FEAP COMMAND INPUT COMMAND MANUAL

stre,gnod,<n1,n2,n3>

Other options for this command are given in the FEAP User Manual. The STREss
command is used to output nodal stress results at global node numbers n1 to n2 at
increments of n2 (default = 1).

The command specified as:

stre,gnode,n1,n2,n3

prints out the stresses for global nodes n1 to n2 at increments of n3 (default increment
= 1). If n2 is not specified only the value of node n1 is output. If both n1 and n2 are
not specified only the first node solution is reported.
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TOLerance FEAP COMMAND INPUT COMMAND MANUAL

tol,,v1

tol,ener,v1

tol,emax,v1

tol,iter,v1,v2,v3

The TOL command is used to specify the solution tolerance values to be used at various
stages in the analysis. Uses include:

1. Convergence of nonlinear problems in terms of the norm of energy in the current
iterate (the inner, dot, product of the displacement increment and the solution
residual vectors).

2. Convergence of iterative solution of linear equations.

3. Convergence of the subspace eigenpair solution which is measured in terms of the
change in subsequent eigenvalues computed.

The basic command, TOL,,tol, without any arguments sets the parameter tol used in
the solution of non-linear problems where the command sequence

LOOP,,30

TANG,,1

NEXT

is given. In this case, the loop is terminated either when the number of iterations
reaches 30 (or whatever number is given in this position) or when the energy error is
less than tol. The energy error is given by

Ei = (duTR)i ≤ tol (duTR)0 = E0

in which R is the residual of the equatons and du is the solution increment. The default
value of tol for the solution of nonlinear problems is 1.0d-16.

The TOL command also permits setting a value for the energy below which convergence
is assumed to occur. The command is issued as TOL,ENERgy,v1 where v1 is the value of
the converged energy (i.e., it is equivalent to the tolerance times the maximum energy
value). Normally, FEAP performs nonlinear iterations until the value of the energy
is less than the TOLerance value times the value of the energy from the first iteration
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as shown above. However, for some transient problems the value of the initial energy
is approaching zero (e.g., for highly damped solutions which are converging to some
steady state limit). In this case, it is useful to specify the energy for convergence
relative to early time steps in the solution. Convergence will be assumed if either the
normal convergence criteria or the one relative to the specified maximum energy is
satisfied.

The TOL command also permits setting the maximum energy value used for conver-
gence. The command is issued as

TOL,EMAXimum,v1

where v1 is the value of the maximum energy quantity. Note that the TIME command
sets the maximum energy to zero, thus, the value of EMAXimum must be reset after
each time step using, for example, a set of commands:

LOOP,time,n

TIME

TOL,EMAX,5.e+3

LOOP,newton,m

TANG,,1

NEXT

etc.

NEXT

to force convergence check against a specified maximum energy. The above two forms
for setting the convergence are nearly equivalent; however, the ENERgy tolerance form
can be set once whereas the EMAXimum form must be reset after each time command.

The command

TOL ITERation itol atol dtol

is used to control the solution accuracy when an iterative solution process is used to
solve the equations

K du = R

In this case the parameter itol sets the relative error for the solution accuracy, i.e.,
when

(RTR)
1/2
i ≤ itol (RTR)

1/2
0

The parameter atol is only used when solutions are performed using the KSP schemes
in a PETSc implementation to control the absolute residual error

(RTR)
1/2
i ≤ atol
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The dtol parameter is used to terminate the solution when divergence occurs. The
default for itol is 1.0d-08, that for atol is 1.0d-16 and for dtol is 1.0d+16.
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Program structure

C.1 Introduction

This section describes the parallel infrastructure for the general purpose finite element
program, FEAP.[1] The current version of the parallel code modifies the serial version
of FEAP to interface to the PETSc library system available from Argonne National
Laboratories.[5, 6] In addition the METIS[7] and ParMETIS[8] libraries are used to par-
tition each mesh for parallel solution.

The necessary modifications and additions for the parallel features are contained in the
directory parfeap. There are four sub-directories contained in parfeap:

1. packages: Contains the subdirectory arpack with the files needed for the (op-
tional) ARPACK eigen solution module (see Section 3.3).

2. partition: Contains the program and include file used to construct the nodal
graph partition using ParMETIS (see Section 1.3).

3. unix: Contains the subprogram files for UNIX based systems.
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Appendix D

Parallel Validation

The validation of the parallel portion of FEAP has been performed on a number of
different basic problems to verify that the parallel extension of FEAP will solve such
problems and that the parallel version performs properly in the sense that it scales
with processor number in an acceptable manner. Furthermore, a series of comparison
tests have been performed to verify that the parallel version of the program produces
the same answers as the serial version. Because of the enormous variety of analyses
that one can perform with FEAP, it is not possible to provide parallel tests for all
possible combinations of program features. Nonetheless, below one will find some
basic validation tests that highlight the performance of the parallel version of the code
on a variety of problems.

All validation tests were performed on a cluster of AMD Opteron 250 processors,
connected together via a Quadrics QsNet II interconnect. Code performance is often
strongly related to the computational sub-systems employed. All tests reported utilized
GCC v3.3.4, MPI v1.2.4, PETSc v2.3.2-p3, AMD ACML (BLAS/LAPACK) v3.5.0,
ParMetis v3.1, Prometheus v1.8.5, and ARPACK c©2001. The batch scheduler assures
that no other jobs are running on the same compute nodes during the runs. All runs
have utilized the algebraic multigrid solver Prometheus in blocked form with coordinate
information. Run times are as reported from PETSc summary statistics from a single
run; Mflops are those associated with PETSc’s KSPsolve object; Number of solves is
the total number of Ax = b solves during the KSP iterations in the total problem, and
Scaling % of ideal is computed as (Mflopsnp/np)/(Mflops2/2) × 100.
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D.1 Timing Tests

D.1.1 Linear Elastic Block

In this test a linear elastic unit block discretized into 70×70×70 8-node brick elements
is clamped on one face and loaded on the opposite face with a uniform load in all
coordinate directions. In blocked form there are 1,073,733 equations in this problem.

Number Time (sec) Mflops Number Scaling
Processors (KSP Solve) Solves % Ideal

2 129.20 1241 13 -
4 71.69 2171 13 87
8 35.77 4646 14 94

16 21.30 8347 14 84
32 13.19 14561 14 73

D.1.2 Nonlinear Elastic Block

In this test a nonlinear neohookean unit block discretized into 50 × 50 × 50 8-node
brick elements is clamped on one face and loaded on the opposite face with a uniform
load in all coordinate directions. In blocked form there are 397,953 equations in this
problem. To solve the problem, to default tolerances, takes 4 Newton iterations within
which there are on average 12 KSP iterations.

Number Time (sec) Mflops Number Scaling
Processors (KSP Solve) Solves % Ideal

2 166.7 1142 53 -
4 82.66 2356 54 103
8 43.48 4642 53 102

16 27.15 7846 56 86
32 15.58 13988 52 77

D.1.3 Plasticity

In this test one-quarter of a plate with a hole is modeled using 364500 8-node brick
elements and pulled in tension beyond yield. The problem involves 10 uniform size load
steps which drives the plate well into the plastic range; each load step takes between
3 and 10 Newton iterations. There are 1,183,728 equations. Due to the large number
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of overall KSP iterations needed for this problem, it has only been solved using 8, 16,
and 32 processors. Scaling is thus computed relative to the 8 processor run.

Number Time (sec) Mflops Number Scaling
Processors (KSP Solve) Solves % Ideal

2 - - - -
4 - - - -
8 220.80 4434 2973 -

16 107.70 8425 2908 95
32 59.03 15645 2868 88

D.1.4 Box Beam: Shells

In this test a box beam is modeled using 40000 linear elastic 4-node shell elements (6-
dof per node). The beam has a 1 to 1 aspect ratio with each face modeled by 100×100
elements. One end is fully clamped and the other is loaded with equal forces in the
three coordinate directions. There are 242,400 equations; the block size is 6 × 6.

Number Time (sec) Mflops Number Scaling
Processors (KSP Solve) Solves % Ideal

2 49.43 510 195 -
4 16.37 1619 190 159
8 12.46 1972 188 97

16 5.03 5246 181 129
32 3.28 8177 184 100

D.1.5 Linear Elastic Block: 10-node Tets

In this test the linear elastic unit block from the first test is re-discretized using 10-node
tetrahedral elements. As in the 8-node brick case, there are 1,073,733 equations in this
problem. In the table below, we also provide the ratio of times for the “same” prob-
lem when solved using 8-node brick elements. This indicates the difficulty in solving
problems (iteratively) that emanate from quadratic approximations. Essentially, per
dof, tets solve in the ideal case 1.5 times slower.
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Number Time (sec) Mflops Number Scaling Slow down
Processors (KSP Solve) Solves % Ideal vs. Brick

2 216.8 1299 30 - 1.7
4 110.4 2615 30 101 1.5
8 56.62 5059 29 97 1.6

16 31.44 9370 30 90 1.5
32 17.07 17659 28 85 1.3

D.1.6 Transient

In this test a short (2 to 1 aspect ratio) neohookean beam is subjected to a step
displacement in the axial direction. The modeling employs symmetry boundary con-
ditions on three orthogonal planes. The beam is discretized into uniform size 8-node
brick elements 10 × 10 × 20 for a total of 7623 equations. The dynamic vibrations of
the material are followed for 40 time steps using Newmark’s method. The steep drop
off in performance should be noted. This is due to the small problems size. There is
too little work for each processor to be effectively utilized here.

Number Time (sec) Mflops Number Scaling
Processors (KSP Solve) Solves % Ideal

2 95.37 1079 1385 -
4 58.91 1687 1420 78
8 39.03 2645 1382 61

16 32.15 3138 1376 36
32 33.61 3123 1371 18

D.1.7 Mock turbine

In this test we model a mock turbine fan blade with 12 fins. The system is loaded using
an Rω2 body force term which is computed consistently. Overall there are 1,080,000
8-node brick elements in the mesh and 3,415,320 equations. It should be noted that
problem, at roughly 3.5 million equations, provides enough work for the processors that
even at 32 processors there is no degradation of performance. The scaling is perfect.
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Number Time (sec) Mflops Number Scaling
Processors (KSP Solve) Solves % Ideal

2 854.3 806 116 -
4 362.4 1931 112 120
8 172.9 4085 110 127

16 88.99 8232 115 128
32 46.68 16159 112 125

D.1.8 Mock turbine Small

In this test we model again a mock turbine fan blade with 12 fins. The system is loaded
using an Rω2 body force term which is computed consistently. Overall, however, there
are only 552960 8-node brick elements in the mesh and 1,771,488 equations.

Number Time (sec) Mflops Number Scaling
Processors (KSP Solve) Solves % Ideal

2 347.40 1097 125 -
4 199.50 1878 132 86
8 91.63 4064 122 93

16 47.68 8024 126 91
32 26.32 15400 119 88

D.1.9 Mock turbine Tets

In this test we model again a mock turbine fan blade with 12 fins. The system is loaded
using an Rω2 body force term which is computed consistently. This time however we
utilize 10-node tetrahedral elements with a model that has 1,771,488 equations. This
computation can be directly compared to the small mock turbine benchmark. The
slow down is given in the last column of the table below.

Number Time (sec) Mflops Number Scaling Slow Down
Processors (KSP Solve) Solves % Ideal vs. Brick

2 507.7 1193 126 - 1.5
4 304.2 1934 129 81 1.5
8 131.0 4675 131 98 1.4

16 70.01 8860 134 93 1.5
32 41.83 16238 127 85 1.6
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D.1.10 Eigenmodes of Mock Turbine

In this test we look at the computation of the first 5 eigen modes of the small (552960
element) mock turbine model. Again, the mesh is composed of 8-node brick elements
and the model has 1,771,488 equations. A lumped mass is utilized and the algorithm
tested is the ARPA symmetric option. Due to the large number of inner-outer iterations
the timing runs are done only for 8, 16, and 32 processors. Scaling is thus computed
relative to the 8 processor run.

Number Time (sec) Mflops Number Scaling
Processors (KSP Solve) Solves % Ideal

2 - - - -
4 - - - -
8 916.9 3757 2744 -

16 507.1 7122 2876 95
32 248.3 14042 2723 93

D.2 Serial to Parallel Verification

Serial to parallel code verification is reported upon below. For all test run, the program
is run in serial mode (with a direct solver) and in parallel mode on 4 processors (forcing
inter- and intra-node communications). Then various computation output quantities
are compared between the parallel and serial runs. In all cases, it is observed that the
outputs match to the computed accuracy.

D.2.1 Linear elastic block

In this test a linear elastic unit block discretized into 5 × 5 × 5 8-node brick elements
is clamped on one face and loaded on the opposite face with a uniform load in all
coordinate directions. The displacements are compared at global nodes 100 and 200
and the maximum overall principal stress is also determined from both runs. All values
are seen to be identical. For the parallel runs, the processor number containing the
value is given in parenthesis and the reported node number is the local processor node
number.

Serial Displacements
Node x-coor y-coor z-coor x-disp y-disp z-disp

100 6.00E-01 8.00E-01 4.00E-01 -1.3778E-01 1.1198E+00 1.1241E+00
200 2.00E-01 6.00E-01 1.00E+00 -4.1519E-01 2.3568E-01 2.6592E-01
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Serial Max Principal Stress
Node Stress

1 4.0881E+02

Parallel Displacements
(P)Node x-coor y-coor z-coor x-disp y-disp z-disp

(4)49 6.00E-01 8.00E-01 4.00E-01 -1.3778E-01 1.1198E+00 1.1241E+00
(2)38 2.00E-01 6.00E-01 1.00E+00 -4.1519E-01 2.3568E-01 2.6592E-01

Parallel Max Principal Stress
(P)Node Stress

(3)1 4.0881E+02

Note: Processor 3’s local node 1 corresponds to global node 1.

D.2.2 Box Beam

In this test a linear elastic unit box-beam discretized into 4 × 20 × 20 4-node shell
elements is clamped on one face and loaded on the opposite face with a uniform load
in all coordinate directions. The displacements are compared at global nodes 500 and
1000 and the maximum overall principal bending moment is also determined from both
runs. All values are seen to be identical. For the parallel runs, the processor number
containing the value is given in parenthesis and the reported node number is the local
processor node number.

Serial Displacements/Rotations
Node x-coor y-coor z-coor x-disp y-disp z-disp

x-rot y-rot z-rot
500 8.00E-01 1.00E-01 1.00E+00 3.6632E-03 -3.2924E-03 2.3266E-03

4.4272E-02 -7.3033E-04 -2.1595E-02
1000 1.00E+00 3.00E-01 2.00E-01 2.2972E-02 1.5303E-03 1.6876E-02

4.8140E-02 2.8224E-02 -1.3278E-01

Serial Max Principal
Bending Moment

Node Stress
1 1.7091E+01
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Parallel Displacements/Rotations
(P)Node x-coor y-coor z-coor x-disp y-disp z-disp

x-rot y-rot z-rot
(1)29 8.00E-01 1.00E-01 1.00E+00 3.6632E-03 -3.2924E-03 2.3266E-03

4.4272E-02 -7.3033E-04 -2.1595E-02
(2)280 1.00E+00 3.00E-01 2.00E-01 2.2972E-02 1.5303E-03 1.6876E-02

4.8140E-02 2.8224E-02 -1.3278E-01

Parallel Max Principal
Bending Moment

(P)Node Stress
(4)1 1.7091E+01

Note: Processor 4’s local node 1 corresponds to global node 1.

D.2.3 Linear Elastic Block: Tets

In this test a linear elastic unit block discretized into 162 10-node tetrahedral elements
is clamped on one face and loaded on the opposite face with a uniform load in all
coordinate directions. The displacements are compared at global nodes 55 and 160
and the maximum overall principal stress is also determined from both runs. All
values are seen to be identical. For the parallel runs, the processor number containing
the value is given in parenthesis and the reported node number is the local processor
node number.

Serial Displacements
Node x-coor y-coor z-coor x-disp y-disp z-disp

55 8.33E-01 0.00E+00 1.67E-01 4.9509E-01 4.3175E-01 4.2867E-01
160 8.33E-01 1.67E-01 5.00E-01 2.1305E-01 4.2030E-01 4.1548E-01

Serial Max
Principal Stress

Node Stress
8 9.0048E+01

Parallel Displacements
(P)Node x-coor y-coor z-coor x-disp y-disp z-disp

(3)23 8.33E-01 0.00E+00 1.67E-01 4.9509E-01 4.3175E-01 4.2867E-01
(1)17 8.33E-01 1.67E-01 5.00E-01 2.1305E-01 4.2030E-01 4.1548E-01
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Parallel Max
Principal Stress

(P)Node Stress
(4)6 9.0048E+01

Note: Processor 4’s local node 6 corresponds to global node 8.

D.2.4 Mock Turbine: Modal Analysis

In this test we examine a small mock turbine model with 30528 equations, where the
discretization is made with 8-node brick elements. We compute using the serial code
(subspace method) the first 5 eigenvalues using a lumped mass. With the parallel
code, we compute the same eigenvalues using a parallel eigensolve (implicitly restarted
Arnoldi). The computed frequencies and from the first 5 modes are compared and seen
to be the same within the accuracy of the computation.

Serial Eigenvalues (rad/sec)2

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5
8.10609997E-02 8.13523152E-02 8.13523152E-02 9.33393875E-02 9.33393875E-02

Parallel Eigenvalues (rad/sec)2

8.10609790E-02 8.13522933E-02 8.13522972E-02 9.33393392E-02 9.33393864E-02

The comparison of eigenvectors is a bit harder for this problem because of repeated
eigenvalues. The first eigenvalue is not repeated and it can easily be seen that the se-
rial and parallel codes have produced the same eigenmode (up to an arbitrary scaling
factor). Eigenvalues 2 and 3 are repeated and thus the vectors computed are, permis-
sibly, drawn from a subspace and thus direct comparison is not evident. The same
holds for eigenvalues 4 and 5; though, it can be observed that vector 4 from the serial
computation does closely resemble vector 5 from the parallel computations – i.e. they
appear to be drawn from a similar region of the subspace.

As a test of the claim of differing eigenmodes due to selection of different eigenvectors
from a subspace, we also compute the first 5 modes of an asymmetric structure that
does not possess repeated eigenvalues. The basic geometry is that of perturbed cube.
The first 5 eigenvalues and modes are compared and show proper agreement to within
the accuracy of the computations for both the eigenvalues and the eigenmodes.
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Figure D.1: Comparison of Serial (left) to Parallel (right) mode shape 1 degree of
freedom 1.
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Figure D.2: Comparison of Serial (left) to Parallel (right) mode shape 2 degree of
freedom 2.
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Figure D.3: Comparison of Serial (left) to Parallel (right) mode shape 3 degree of
freedom 3.
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Figure D.4: Comparison of Serial (left) to Parallel (right) mode shape 4 degree of
freedom 1.
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Figure D.5: Comparison of Serial (left) to Parallel (right) mode shape 5 degree of
freedom 2.
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Figure D.6: Comparison of Serial (left) to Parallel (right) mode shape 1 degree of
freedom 1.
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Figure D.7: Comparison of Serial (left) to Parallel (right) mode shape 2 degree of
freedom 2.

Serial Eigenvalues (rad/sec)2

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5
4.46503673E+01 4.52047021E+01 9.08496135E+01 2.32244552E+02 3.04152767E+02

Parallel Eigenvalues (rad/sec)2

4.46503674E+01 4.52047021E+01 9.08496136E+01 2.32244552E+02 3.04152767E+02

D.2.5 Transient

This test involves a mixed element test with shells, bricks, and beams under a random
dynamic load. The basic geometry consists of a cantilever shell with a brick block above
it which has an embedded beam protruding from it. The loading is randomly prescribed
on the top of the structure and the time histories are followed and compared for the
displacements at a particular point, the first stress component in a given element, and
the 1st principal stress and von Mises stress at a particular node. The time history is
followed for 20 time steps. The time integration is performed using Newmark’s method.
Agreement is seen to be perfect to the accuracy of the computations.
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Figure D.8: Comparison of Serial (left) to Parallel (right) mode shape 3 degree of
freedom 3.
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Figure D.9: Comparison of Serial (left) to Parallel (right) mode shape 4 degree of
freedom 1.
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Figure D.10: Comparison of Serial (left) to Parallel (right) mode shape 5 degree of
freedom 2.
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z-Displacement at (0.6,1,1) σxx in Element 1
Time Serial Value Parallel Value Serial Value Parallel Value

0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
2.5000E-01 2.5181E-04 2.5181E-04 3.9640E-02 3.9640E-02
5.0000E-01 6.0174E-04 6.0174E-04 1.3681E-01 1.3681E-01
7.5000E-01 8.3328E-04 8.3328E-04 1.9837E-01 1.9837E-01

1.0000E+00 1.1250E-03 1.1250E-03 2.2532E-01 2.2532E-01
1.2500E+00 4.2010E-04 4.2010E-04 1.5061E-01 1.5061E-01
1.5000E+00 -7.1610E-04 -7.1610E-04 -1.5312E-01 -1.5312E-01
1.7500E+00 -1.3485E-03 -1.3485E-03 -3.7978E-01 -3.7978E-01
2.0000E+00 -2.2463E-03 -2.2463E-03 -4.2376E-01 -4.2376E-01
2.2500E+00 -1.8943E-03 -1.8943E-03 -4.4457E-01 -4.4457E-01
2.5000E+00 -9.1891E-04 -9.1891E-04 -2.9013E-01 -2.9013E-01
2.7500E+00 -6.8862E-04 -6.8862E-04 -1.4539E-02 -1.4539E-02
3.0000E+00 3.8305E-05 3.8306E-05 1.1134E-03 1.1139E-03
3.2500E+00 7.4499E-05 7.4499E-05 -1.1587E-01 -1.1587E-01
3.5000E+00 -1.4893E-04 -1.4893E-04 1.1732E-01 1.1732E-01
3.7500E+00 1.9767E-04 1.9767E-04 4.3679E-02 4.3678E-02
4.0000E+00 -1.8873E-04 -1.8873E-04 -2.1461E-01 -2.1461E-01
4.2500E+00 5.7747E-04 5.7747E-04 2.6870E-01 2.6871E-01
4.5000E+00 1.3268E-03 1.3268E-03 3.2132E-01 3.2132E-01
4.7500E+00 1.3859E-03 1.3859E-03 1.3378E-01 1.3378E-01
5.0000E+00 2.5241E-03 2.5241E-03 6.6854E-01 6.6854E-01
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Stresses at Global Node 1
Time Serial Values Parallel Values
Step I1 Principal von Mises I1 Principal von Mises
1 7.5561E-02 9.5922E-02 7.5561E-02 9.5922E-02
2 2.4364E-01 3.0328E-01 2.4364E-01 3.0328E-01
3 3.4447E-01 4.2623E-01 3.4447E-01 4.2623E-01
4 4.0833E-01 5.1265E-01 4.0833E-01 5.1265E-01
5 2.5260E-01 3.1018E-01 2.5260E-01 3.1018E-01
6 1.5934E-01 3.6208E-01 1.5934E-01 3.6208E-01
7 3.5077E-01 7.7659E-01 3.5077E-01 7.7659E-01
8 4.3971E-01 9.8767E-01 4.3971E-01 9.8767E-01
9 4.4131E-01 9.8761E-01 4.4131E-01 9.8761E-01
10 2.5587E-01 5.6437E-01 2.5587E-01 5.6437E-01
11 1.2681E-01 2.3667E-01 1.2681E-01 2.3667E-01
12 2.3099E-02 3.6287E-02 2.3099E-02 3.6286E-02
13 9.8640E-02 2.2004E-01 9.8640E-02 2.2004E-01
14 2.0000E-01 2.4597E-01 2.0000E-01 2.4597E-01
15 1.1798E-01 1.6039E-01 1.1798E-01 1.6039E-01
16 1.8668E-01 4.2255E-01 1.8668E-01 4.2255E-01
17 4.3432E-01 5.2267E-01 4.3432E-01 5.2267E-01
18 5.8732E-01 7.3503E-01 5.8732E-01 7.3503E-01
19 2.7197E-01 3.7066E-01 2.7197E-01 3.7066E-01
20 1.1706E+00 1.4434E+00 1.1706E+00 1.4434E+00

D.2.6 Nonlinear elastic block: Static analysis

In this test a unit neo-hookean block is clamped on one side and subjected to surface
load on the opposite side. The displacements at two random nodes are compared as
well as the max equivalent shear stress (von Mises) over the entire mesh. All values
are seen to be the same between the serial and parallel computation.

Serial Displacements
Node x-coor y-coor z-coor x-disp y-disp z-disp

50 0.00E+00 0.00E+00 1.67E-01 0.0000E+00 0.0000E+00 0.0000E+00
100 1.67E-01 0.00E+00 3.33E-01 5.6861E-04 1.0501E-04 1.5672E-04

Serial Maximum
Equivalent Shear

0.881
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Parallel Displacements
(P)Node x-coor y-coor z-coor x-disp y-disp z-disp

(2) 27 0.00E+00 0.00E+00 1.67E-01 5.8777E-17 4.9956E-18 -6.3059E-17
(2) 54 1.67E-01 0.00E+00 3.33E-01 5.6861E-04 1.0501E-04 1.5672E-04

Note: Processor 2’s nodes 27 and 54 correspond to global nodes 50 and 100.

Parallel Maximum
Equivalent Shear

0.881

D.2.7 Nonlinear elastic block: Dynamic analysis

In this test a non-linear neo-hookean block is subjected to a step displacement at one
end while the other is end is clamped. The time history of the displacement at the
center of the block is followed. The time integration is performed using Newmark’s
method. Agreement is seen to be perfect to the accuracy of the computation.

x-Displacement
Serial Run Parallel Run

Time (Node 172) (Node 25, Processor 3)
0.0000E+00 0.0000E+00 0.0000E+00
1.0000E-02 -6.6173E-07 -6.6173E-07
2.0000E-02 1.1588E-05 1.1588E-05
3.0000E-02 -4.8502E-05 -4.8502E-05
4.0000E-02 -4.8177E-05 -4.8177E-05
5.0000E-02 2.6189E-04 2.6189E-04
6.0000E-02 7.8251E-04 7.8251E-04
7.0000E-02 1.0785E-03 1.0785E-03
8.0000E-02 9.7015E-04 9.7015E-04
9.0000E-02 7.7567E-04 7.7567E-04
1.0000E-01 8.2252E-04 8.2252E-04

Note: Local node 25 of processor 3 corresponds to global node 172.

D.2.8 Plastic plate

In this test a small version of the quarter plastic plate from the timing runs is used with
4500 8-node brick elements. The problem involves 10 uniform size load steps which
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Figure D.11: von Mises stresses at the end of the loading. (left) serial, (right) parallel

drives the plate well into the plastic range. The displacement history is followed for a
point on the loaded edge of the plate. As seen in the tables the parallel and serial runs
match. Also shown are the contours of the von Mises stresses at the end of the run
with the plastic zone emanating from the plate hole; these also match perfectly within
the accuracy of the computation.

y-Displacement
Load Serial Run Parallel Run
Step (Node 5700) (Node 1376, Part. 4)

0.0000E+00 0.0000E+00 0.0000E+00
1.0000E-01 1.5260E-02 1.5260E-02
2.0000E-01 3.0520E-02 3.0520E-02
3.0000E-01 4.5780E-02 4.5780E-02
4.0000E-01 6.1039E-02 6.1039E-02
5.0000E-01 7.6308E-02 7.6308E-02
6.0000E-01 9.1639E-02 9.1639E-02
7.0000E-01 1.0707E-01 1.0707E-01
8.0000E-01 1.2264E-01 1.2264E-01
9.0000E-01 1.3848E-01 1.3848E-01

1.0000E+00 1.5519E-01 1.5519E-01

Note: Local node 1376 on processor 4 corresponds to global node 5700.

D.2.9 Transient plastic

This test involves a mixed element test with shells, bricks, and beams under a random
dynamic load with load sufficient to cause extensive plastic yielding in the system. The
basic geometry consists of a cantilever shell with a brick block above it which has a an
embedded beam protruding from it. The loading is randomly prescribed on the top of
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Figure D.12: Z-displacement for the node located at (0.6, 1.0, 1.0).

the structure and the time histories are followed and compared for the displacements at
a particular point, the first stress component in a given element, and the 1st principal
stress and von Mises stress at a particular node. The time history is followed for
150 time steps. The time integration is performed using Newmark’s method. As a
benchmark the elastic response (from the serial computation) is also shown in each
figure. The agreement between the parallel and serial runs is seen to be perfect.
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Figure D.13: 11-component of the stress in the element nearest (1.6, 0.2, 0.8).
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Figure D.14: 1st principal stress at the node located at (1.6, 0.2, 0.8).
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Figure D.15: von Mises stress at the node located at (1.6, 0.2, 0.8).
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