
FEAP - - A Finite Element Analysis Program

Version 8.6 Programmer Manual

Robert L. Taylor & Sanjay Govindjee
Department of Civil and Environmental Engineering

University of California at Berkeley
Berkeley, California 94720-1710

Revised January 2020

Contents

1 Introduction 1
1.1 Setting Program Options . 1
1.2 Fortran variable declaration . 3
1.3 Uses of Common and Include Statements 4

2 Data Input and Output 5
2.1 Parameters and Expressions . 5
2.2 Array Outputs . 7

3 Allocating Arrays 9

4 User Functions 17
4.1 Mesh Input Functions - UMESHn. 17

4.1.1 Command line TX data . 19
4.1.2 Nodal coordinate inputs . 20
4.1.3 Element connectivity inputs . 23

4.2 Mesh Manipulation Functions - UMANIn. 25
4.3 Solution Command Functions - UMACRn. 26
4.4 Plot Command Functions - UPLOTn. 26

4.4.1 Plot of lines and filled panels 27
4.4.2 Plot numbers . 28
4.4.3 Plot text . 28
4.4.4 Plot colors . 28

4.5 User Material Models . 28
4.5.1 The UMATIn Module . 30
4.5.2 The UMATLn Module . 30
4.5.3 Accessing element and nodal data 38
4.5.4 Auto time step control . 39
4.5.5 Push forward routines . 40
4.5.6 Polar decompositions . 42
4.5.7 Numerical differentiation: Complex step 43

5 Adding Elements 45

i

CONTENTS ii

5.1 Material property storage . 50
5.2 Element matrix dimensions . 51
5.3 Elements with internal equations . 62
5.4 Non-linear Transient Solution Forms 63
5.5 Setting Options in Elements . 66

5.5.1 Task 1 Options . 66
5.5.2 Task 2 Options . 71
5.5.3 Task 3 Options . 72
5.5.4 Task 6 Options . 72

5.6 Projection of element variables to nodes 73
5.7 Elements with History Variables . 75

5.7.1 Assigning amount of storage for each element 76
5.7.2 Accessing history data for each element 77

5.8 Accessing global array values . 78
5.9 Elements with Finite Rotation Parameters 79

5.9.1 Nodal rotation treatment: UROTmm subprogram 80
5.9.2 Local nodal rotation treatment 81

5.10 Energy Computation . 82
5.11 Global constraints on elements . 83
5.12 Scaling factors for elements . 85
5.13 Dynamic periodic response in elements 86

5.13.1 Viscoelastic damping . 86
5.13.2 Rayleigh damping . 87

5.14 Using formfe to add element functions 88

6 Utility routines 89
6.1 Numerical quadrature routines . 89

6.1.1 One dimensional quadrature . 89
6.1.2 Two dimensional quadrature . 90
6.1.3 Three dimensional quadrature 91

6.2 Shape function subprograms . 92
6.2.1 Shape functions in one-dimension 93
6.2.2 Shape functions in two-dimensions 94
6.2.3 Shape functions in three-dimensions 97

6.3 Eigenvalues for 3× 3 matrix . 99
6.4 Plot routines . 100

6.4.1 Mesh plots . 100
6.4.2 Element data plots . 102
6.4.3 Other user plots . 105

6.5 Tabular data . 105

7 Adding a user solver 108

CONTENTS iii

A Example: 2-Node Truss Element 110
A.1 Linear truss element . 110
A.2 A Non-linear Theory for a Truss . 114

B Compiling in C 120

List of Figures

4.1 Sample UMESHn module . 18
4.2 Sample UMESH module . 21
4.3 Sample UMANLn module . 25
4.4 Sample UMACRn module . 26
4.5 Sample UPLOTn module . 27
4.6 Sample UMATI1 module . 31
4.7 Sample UMATLn module for small deformation 35
4.8 Sample UMATLn module for finite deformation 37

5.1 FEAP Element Subprogram. Part 1. 46
5.1 FEAP Element Subprogram. Part 2. 47
5.2 FEAP Element Subprogram. Case form. 50
5.3 Partial list of FEAP element common blocks. (N.B. All variables may

not be included above.): Part 1 . 51
5.3 Partial list of FEAP element common blocks: Part 2 52
5.4 FEAP Element Common Blocks using Includes. 52
5.5 Tangent matrix and residual including element and global constraints. 60
5.6 Element variable projection routine by row sum 76
5.7 Tangent matrix and residual including element and global constraints. 84

6.1 Line type elements in FEAP library 93
6.2 Triangular surface type elements in FEAP library 95
6.3 Quadrilateral surface type elements in FEAP library 96
6.4 Tetrahedron solid type elements in FEAP library 97
6.5 Brick solid type elements in FEAP library 98
6.6 Example of tabular x-y data . 106

A.1 2-Node Truss Element . 112
A.2 Element residual for two node truss . 115
A.3 Truss Tangent Matrix. Part 1 . 116
A.4 Truss Tangent Matrix. Part 2 . 117

iv

List of Tables

3.1 Mesh Array Names, Numbers and Sizes 12
3.2 Solution Array Names, Numbers and Sized 12
3.3 Element Array Names, Numbers and Sizes 12
3.4 Element connection array IX use for element e 13
3.5 Element types in IX(nen+7,e) . 13
3.6 Element control array IE use for material number ma 14
3.7 Element degree of freedom assignment array IEDOF use for material num-

ber ma . 14

4.1 Element TYPE specification on connectivity input. 23
4.2 Color Table for Plots . 29
4.3 Stress components used in 2-D analyses. 33

5.1 Arguments of FEAP Element Subprogram. 48
5.2 Task Options for FEAP Element Subprogram. R = Required; O =

Optional; E = For eigensolutions . 49
5.3 FEAP common block partial list of definitions. 53
5.4 FEAP common block partial list of definitions. 54
5.5 Material Parameters. 55
5.5 (Cont.) Material Parameters. 56
5.5 (Cont.) Material Parameters. 57
5.5 (Cont.) Material Parameters. 58
5.5 (Cont.) Material Parameters. 59
5.6 Tangent Parameters . 66
5.7 Element Plot Definition Subprograms 68
5.8 Element Checking Subprograms . 71
5.9 Momenta and Energy Assignments . 82
5.10 Displacement and rate arrays at current solution state. 83
5.11 Global scaling parameters in pglob1.h. 85
5.12 Argument parameters for calls to formfe. 88

6.1 Quadrature for triangles . 91
6.2 Quadrature for tetrahedra . 92

v

LIST OF TABLES vi

6.3 Color pallet for FEAP plots . 103
6.4 Values for control of plots . 104

B.1 Fortran and C variable typing. 120

Chapter 1

INTRODUCTION

In this part of the FEAP manual some of the options to extend the capabilities of
the program are described. We begin by describing the utilities provided in FEAP for
use in data input. Options to add user commands for mesh and command language
extensions is then described and finally the method to add an element to the program
is described.

1.1 Setting Program Options

The size of problems which may be solved by FEAP depends on the amount of memory
available in the computer, as well as, solution options used. Memory for the main
arrays used to solve problems is dynamically allocated during the solution. Arrays are
allocated and deallocated using a system subprogram PALLOC or, for user developed
modules using subprogram UALLOC. Further information on use of these routines is
given in Section 3.

The IPR parameter in the feap86.f module controls the specification of the ratio of
REAL to INTEGER variables. For typical UNIX and PC systems all real variables should
be twice as large as integers and IPR is set to 2. For systems in which INTEGER*8

variables are used (set by compiler option) the IPR parameter is set to 1. Any error
in setting this parameter may lead to incorrect behavior of the program, consequently,
do not reset the parameter unless a careful assessment of compiler behavior has been
made.

Normally FEAP reads each input data line as text data and checks each character for
the presence of parameters, expressions, and constants. For very large data sets this
parsing of each instruction can consume several seconds of compute time. If all data
is normally provided as numerical data, without use of any parameters or expressions,

1

CHAPTER 1. INTRODUCTION 2

the input time may be reduced by setting the value of the logical variable COFLG in
feap86.f to false. FEAP will automatically switch to parsing mode if any record
contains non-numerical data item. It is also possible to use the PARSe and NOPArse

commands to set the appropriate mode of data input.

In Windows versions it is sometimes desirable to obtain the input file name from a
pop-up menu. This is accomplished by setting the parameter CIFLG to true.

During the input of plot commands FEAP has the option to either set input options
automatically (DEFAult mode) or to read the values or range of contours to plot.
The default mode of operation may be assigned in the feap86.f module by setting
the variables DEFAult and PROMPT. Setting DEFAult to true indicates that all default
options are to be set automatically. If DEFAult is set false, a prompt for contour
intervals may be requested by setting PROMPT to true.

FEAP has options to produce encapsulated PostScript output files in either gray scale
of in color. The default mode may be established by setting the variable PSCOLR and
PSREVS. Setting PSCOLR true indicates the PostScript files will be in color (unless set
otherwise by the PLOT COLOr data command. The PSREVS variable reverses the color
sequence.

The last parameter which may be set in the feap86.f module is the level for displaying
available commands when the HELP command is used while in mesh, solution, or plot
mode. FEAP contains a large number of commands which are not commonly used by
many users. To control the default number of commands displayed to users the com-
mands have been separated into four levels: (0) Basic; (1) Intermediate; (2) Advanced;
and (3) Expert. The level to be displayed when using the HELP command is given may
be set in the integer variable HLPLEV. That is, setting:

hlplev = 1 ! Intermediate

results in commands up to the intermediate level being displayed. It is possible to raise
or lower the level during execution using the command MANUal,,level where level is
the numerical value desired.

When developing program modules it is often desirable to have output of specific
quantities available (e.g. tracking the change in some parameters during successive
iterations. FEAP provides for a switch to make the outputs active or inactive during
an execution. The switch is named debug and placed in

integer ndebug
logical debug
common /debugs/ ndebug,debug

CHAPTER 1. INTRODUCTION 3

The value of the debug is set true by the solution command DEBUg and false by the

command DEBUg,OFF. Thus, placing code fragments into modules as

if(debug) then

write(iow,*) ’LABEL’,list ... ! writes to output file

! and/or

write(*,*) ’LABEL’,list ... ! writes to screen

endif ! debug

This device supplements use of available debuggers on the computer.

1.2 Fortran variable declaration

FEAP has been developed over many years and contains programming style in Fortran

77 ; Fortran 90 and later versions. Thus, most of the files use the *.f extender and

not *.f90.1 For the unix version some routines are also written in C. User modules

may be added using either the syntax for *.f, *.f90 or *.c.

The main real and integer variables in FEAP are set using the Fortran declarations

real (kind=8) :: or it can be real*8

complex (kind=8) ::

integer ::

integer (kind=8) :: ! For use with ’mr’ or ’hr’

character (len=) ::

logical ::

In particular we do not recommend the use of

integer (kind=4) ::

which is equivalent to integer since this does not permit compiler options to convert

to large 64-bit integers. In some instances there are some declaration of 32-bit real

variables using

real (kind=4) :: or real*4

however, these are mostly for the timing routine, not main variables.

1The parallel module also uses files with *.F extender for preprocessing by PETSc.

CHAPTER 1. INTRODUCTION 4

1.3 Uses of Common and Include Statements

FEAP contains many COMMON statements that are used to pass parameters and small

array values between subprograms. For example, access to the debugging parameter

debug is facilitated through common /debugs/. Users may either place the common

statement (as well as data typing statements) directly in the routine or may use an

include statement. For debugging the statement would be

include ’debugs.h’

which during compilation would direct the precompiler to load the current common

statement from this file. In FEAP all include files have the same name as the common

with an added extender .h. For example, the common file name comblk.h is defined

as

real (kind=8) :: hr

integer mr

common /comblk/ hr(1024),mr(1024)

The arrays hr(1024) and mr(1024) serve to pass all dynamically allocated arrays

between subprograms using a pointer array contained in the common array named

np(*) [or for user defined arrays in up(*)] located in the include file pointer.h. 2

See Section 3 for more details on use of pointers. All include files are located in the

directories include.

It is highly recommended that users use include files rather than giving equivalent

common statements directly. If later releases of the FEAP program revise contents in

a common block, it will only be necessary to recompile the user routine rather than

change all the common statement definitions.

2The values 1024 are necessary to ensure loops on arrays using pointers directly are considered as
long.

Chapter 2

DATA INPUT AND OUTPUT

FEAP includes utilities to perform input and to output small arrays of data. Users

are strongly encouraged to use the input utilities but often may wish to use their own

utilities to output data.

2.1 Parameters and Expressions

The subroutines PINPUT and TINPUT are input subprograms used by FEAP to input

each data record. They permit the data to be in a free form format with up to 16

items (or 256 characters) on each record, as well as to employ expressions, parameters,

and numerical representations for each data item. These routines also should be used

to input data in any new program module developed. The PINPUT routine returns

data to the calling subprogram in a double precision array. The following statements

may be included as part of the routine performing the input.

subroutine xxx(.....)

include ’iofile.h’ ! ior,iow,ilg unit numbers

logical :: errck, pinput
real (kind=8) :: td(5)

1 if(ior.lt.0) write(*,3000)
errck = pinput(td, 5)
if(errck) go to 1

The parameters defined in the include file (common block) are:

5

CHAPTER 2. DATA INPUT AND OUTPUT 6

ior - input file unit number (if negative, input
from keyboard)

iow - output file unit number
ilg - solution log file unit number

If an error occurs during input from the keyboard FEAP returns a value of true for the

function and a user may reinput the record if the implied loop shown above is used.

For inputs from a file, the program will stop and an error message indicating the type

of error occurring and the location in an input file is written to the output file.

The input routines return data in a real*8 array td(*). If any td(i) is to be used

as an integer or real*4 quantity, it must be cast to the correct type. That is, the

following operations should be used to properly cast the variable type:

real (kind=4) :: t
real (kind=8) :: td(5)
integer :: j
logical :: errck, pinput

errck = pinput (td, 5)

j = nint(td(1)) ! Integer assignment
t = float(td(2)) ! Real*4 assignment

PINPUT may be used to input up to 16 individual expressions on one input record

(each input record is, however, limited to 256 characters).

The routine TINPUT differs from PINPUT by permitting text data to also be input.

It is useful for writing user commands or to input data described by character arrays.

The routine is used as

logical :: errck, tinput
integer :: nt, nn
character (len=15) :: text(16)
real (kind=8) :: td(16)

errck = tinput(text,nt,td,nn)

The parameter nt specifies the number of text values to input and the nn specifies the

number of real data values to input. The value for parameter nt or nn may be zero.

Thus the use of

errck = tinput(text,0,td,nn)

CHAPTER 2. DATA INPUT AND OUTPUT 7

is equivalent to

errck = pinput(td,nn)

Text variables may be converted to numerical (REAL*8) form using the subroutine call

call setval(text,nc,td)

where text is a string with nc characters and td a REAL*8 variable. The text string

can contain any parameters, expressions or numerical constants which evaluate to a

single value.

2.2 Array Outputs

Two subprograms exist to output arrays of integer and real (double precision) data.

The routine MPRINT is used to output real data and is accessed by the statement:

call mprint(array, nrow, ncol, ndim, label)

where array is the name of the array to print, nrow and ncol are the number of rows and

columns to output, ndim is the first dimension on the array, and label is a character

label which is added to the output. For example the statements:

real (kind=8) :: aa(8,6)
. . .

call mprint(aa(2,4), 2, 3, 8, ’AA’)

outputs a 2 × 3 submatrix from the array aa starting with the entry aa(2,4). The

output entries will be ordered as the terms:

aa(2,4) aa(2,5) aa(2,6)
aa(3,4) aa(3,5) aa(3,6)

The MPRINT routine adds row and column labels as well as the character label.

The routine NZPRINT is used to output the upper non-zero block of a real array and is

accessed by the statement:

CHAPTER 2. DATA INPUT AND OUTPUT 8

call nzprint(array, nrow, ncol, ndim, label)

where all parameters are identical to those for MPRINT.

The routine IPRINT is used to output integer data and is accessed by the statement:

call iprint(array, nrow, ncol, ndim, label)

where all parameters are identical to those for MPRINT except the array must be of type

integer.

The routine CPRINT is used to output complex (kind=8) data and is accessed by the

statement:

call cprint(array, nrow, ncol, ndim, label)

where all parameters are identical to those for MPRINT except the array must be of type

complex.

The routine LPRINT is used to output logical data and is accessed by the statement:

call lprint(array, nrow, ncol, ndim, label)

where all parameters are identical to those for MPRINT except the array must be of type

logical.

Chapter 3

ALLOCATING ARRAYS

Dynamic data allocation is accomplished in FEAP by defining addresses in pointers

contained in the common block defined in pointer.h. This common block contains

pointers np for standard program arrays and up for user defined arrays and has the

form

integer num_nps , num_ups
parameter (num_nps = 400 , num_ups = 200)

integer (kind=8) :: np , up
common /pointer/ np(num_nps) , up(num_ups)

Each pointer is an offset relative to the address of a REAL*8 array hr(1) or an INTEGER

array mr(1) defined in a blank common

real (kind=8) :: hr
integer mr
common /comblk/ hr(1024),mr(1024)

which is placed in the file comblk.h in the include directory. The pointers 64-bit

length (i.e., integer (kind=8)) allows access to all of the computer memory. The

arrays ’hr’ and ’mr’ are used to establish addresses only and not to physically store

data. This mechanism permits references to elements in arrays which have positions

relative to hr or mr that may be after or before 1. Thus, FEAP must be compiled

without strict array bound checking. Size of problems is limited only by the available

memory in the computer used.

When using 64-bit pointers users must be careful to always define the address of an

array in a calling statement to also be 64-bits in length. For example use of

9

CHAPTER 3. ALLOCATING ARRAYS 10

integer :: ioff

...

ioff = np(111) + numnp

call submat(hr(ioff), ...)

would cause an error since the pointer ioff is only 32 bits in length. To avoid this

problem it is necessary to either declare ioff to be 64-bits long as

integer (kind=8) :: ioff

or use one of the FEAP include files p int.h (defining the integer type array fp(10))

or p point.h (defining the integer type scalar point).

Using this scheme permits direct reference to either real*8 or integer arrays in pro-

gram modules without need to pass arrays through arguments of subprograms. A

subprogram PALLOC controls the allocation of all standard arrays in FEAP defined by

the np pointers and a subprogram UALLOC permits users to add allocation for their

own arrays defined by the pointers up. The basic use of the routines is provided by an

instruction

setvar = palloc(number,’NAME’,length,precision)

or

setvar = ualloc(number,’NAME’,length,precision)

where setvar, palloc and ualloc are logical types, number is an integer number of

the array, NAME is a 5 character name of the array, length is the number of words

of storage needed for the array, and precision is the type of array to allocate (1 for

integer and 2 for real*8 types). Upon initial assignment of any array its values

are set to zero. Thus, if the array is to be used only once it need not be set to zero

before accumulating additional values. If the array is to be reused or resized (see

below) it must be reinitialized prior to accumulating any additional values. Use of

these subprograms controls the assignment of memory space for all arrays such that no

conflicts occur between hr and mr referenced arrays. Each routine which makes direct

reference to an allocated array using a pointer (e.g., hr(np(43)) or mr(up(1))) must

contain include files as

include ’pointer.h’

include ’comblk.h’

CHAPTER 3. ALLOCATING ARRAYS 11

As an example for the use of the above allocation scheme consider a case where it is

desired to allocate a real (double precision array) with length NUMNP (number of nodes

in mesh) and an integer array with length NUMEL (number of elements in mesh). The

parameters NUMNP and NUMEL are contained in COMMON /CDATA/ and available using the

include file cdata.h. The new arrays are defined using the temporary names TEMP1 and

TEMP2 which have numerical locations ‘111’ and ‘112’, respectively.1 The two arrays

are allocated using the statements

setvar = palloc(111, ’TEMP1’, numnp, 2)
setvar = palloc(112, ’TEMP2’, numel, 1)

where the last entry indicates whether the array is REAL*8 (2) or INTEGER (1). These

arrays are now available in any subprogram by specifying the pointer.h and comblk.h

include files and referencing the arrays using their pointers, e.g., in a subroutine call

as:

include ’pointer.h’

include ’comblk.h’

...

call subname (hr(np(111)) , mr(np(112)))

Note the use of hr(*) and mr(*) for the double precision and integer references,

respectively. Also, the use of the pointers avoids a need to include the array reference

until it is needed in a computation.

A short list of the mesh arrays available in FEAP is given in Table 3.1, for solution

arrays in Table 3.2, and for element arrays in Table 3.3. The names of all active arrays

in any analysis may be obtained using the SHOW,DICTionary solution command.

The array IX(nen1,numel) is used to store basic information for each element in the

mesh related to the nodal connections and material data requirements. In addition,

arrays IE and IEDOF define additional information required to process each element.

Tables 3.4, 3.6 and 3.7 describe the use of individual entries in the arrays IX, IE, and

IEDOF, respectively.

The subprograms PALLOC and UALLOC may also be used to destroy a previously defined

array. This is achieved when the length of the array is specified as zero (0). For

example, to destroy the arrays defined as TEMP1 and TEMP2 the statements

1See the subprogram palloc.f in the program directory for the names and numbers of existing
arrays.

CHAPTER 3. ALLOCATING ARRAYS 12

NAME Num. dim 1 dim 2 dim 3 Description
ANG 45 numnp - - Angle
D 25 ndd nummat - Material parameters
F 27 ndf numnp 2 Force and Displacement
ID 31 ndf numnp 2 Equation nos. (1) and B.C. (2)
IE 32 nie nummat - Element control, dofs, etc.
IX 33 nen1 numel - Element connections
T 38 numnp - - Temperature
U 40 ndf numnp 3 Solution array
VEL 42 ndf numnp nt Solution rate array
X 43 ndm numnp - Coordinates

Table 3.1: Mesh Array Names, Numbers and Sizes

NAME Num. dim 1 dim 2 dim 3 Description
CMASn n+8 compro - - Consistent Mass
DAMPn n+16 compro - - Damping
JPn n+20 neq - - Profile pointer
LMASn n+12 neq - - Lump Mass
TANGn n maxpro - - Symmetric tangent
UTANn n+4 maxpro - - Unsymmetric tangent

Table 3.2: Solution Array Names, Numbers and Sized

NAME Num. dim 1 dim 2 dim 3 Description
ANGL 46 nen - - Angle
LD 34 nst - - Assembly nos.
P 35 nst - - Element vector
P 35 or ndf nen Element vector
S 36 nst nst - Element matrix
TL 39 nen - - Temperature
UL 41 ndf nen 6 Solution array
XL 44 ndm nen - Coordinates

Table 3.3: Element Array Names, Numbers and Sizes

CHAPTER 3. ALLOCATING ARRAYS 13

NAME Description
IX(1 ,e) Global node 1
· · · to
IX(nen ,e) Global node nen
IX(nen+1,e) H1 history data pointer
IX(nen+2,e) H2 history data pointer
IX(nen+3,e) H3 history data pointer
IX(nen+4,e) Lagrange multiplier tag
IX(nen+5,e) Lagrange multiplier data pointer
IX(nen+6,e) Time integrator: 0=implicit; > 0=explicit
IX(nen+7,e) Element type: FE ≤ 0; IGA > 0
IX(nen1 ,e) Element material type number
IX(nen1-1,e) Element region number (default = 0); Active region >0;

Inactive region <0
IX(nen1-2,e) Active/deactive start
IX(nen1-*,e) Used for element data pointers

Table 3.4: Element connection array IX use for element e

Number Shape
0 Undefined
1 Line
2 Triangle
3 Quadrilateral
4 Tetrahedron
5 Hexagon
6 Wedge
7 Pyramid
8 Point

Table 3.5: Element types in IX(nen+7,e)

CHAPTER 3. ALLOCATING ARRAYS 14

NAME Description
IE(1,ma) Plot shape dimension (0,1,2,3); 0 = no plot, 1 = line; 2

= surface; 3 = solid.
IE(2,ma) Rigid material number.
IE(nie ,ma) Number history variables/element (NH1 and NH2).
IE(nie-1,ma) Element material type number (ELMT01 = 1, etc.).
IE(nie-2,ma) Element material type identifier (default = ma).
IE(nie-3,ma) Offset to NH1/2 history variables (default = 0).
IE(nie-4,ma) Offset to NH3 history variables (default = 0).
IE(nie-5,ma) Number history variables/element (NH3).
IE(nie-6,ma) Finite rotation update number (for PROTxx or

UROTxx).
IE(nie-7,ma) Get tangent from element if 0; if > 0 numerically differ-

entiate residual to obtain tangent.
IE(nie-8,ma) Equation number for element Lagrange multiplier.
IE(nie-9,ma) Partition number for element Lagrange multiplier.
IE(nie-10,ma) Global equation number.

Table 3.6: Element control array IE use for material number ma

NAME Description
IEDOF(1,i,ma) Degree of freedom 1 for node i of material ma.
· · · to
IEDOF(ndf,i,ma) Degree of freedom ndf for node i of material.

Table 3.7: Element degree of freedom assignment array IEDOF use for material number
ma

CHAPTER 3. ALLOCATING ARRAYS 15

setvar = palloc(111, ’TEMP1’, 0, 2)
setvar = palloc(112, ’TEMP2’, 0, 1)

are given. Use of these statements results in the pointers np(111) and np(112) being

set to zero and the space used by the arrays being released for use by other allocations

at a later point in the program.

A call to PALLOC or UALLOC for any previously defined array but with a different non-

zero length causes the size of the array to be either increased or decreased.

For user defined arrays specified in UALLOC care should be exercised in selecting the

alphanumeric NAME parameter, which is limited to 5 characters, so that conflicts are not

created with existing names (use of the SHOW,DICT command is one way to investigate

names of arrays used in an analysis) or check the names already contained in the

subprogram PALLOC.

The subroutine PGETD also may be used to retrieve internal data arrays by NAME for use

in user developed modules. For example, if a development requires the nodal coordinate

data the call

integer :: xpoint, xlen, xpre
logical :: flag
....
call pgetd (’X ’,xpoint,xlen,xpre,flag)

will return the first word address in memory for the coordinates as xpoint, the length

of the array as xlen, and the precision of the array as xpre. If the retrieval is successful

flag is returned as true, whereas if the array is not found it is false. The precision

will be either one (1) or two (2) for INTEGER or double precision (REAL*8) quantities,

respectively. Thus, the above coordinate call will return xpre as 2 and xlen will be

the product of the space dimension of the mesh and the total number of nodes in the

mesh. The first coordinate, x1, may be given as

x1 = hr(xpoint)

any other coordinates at nodes may also be recovered by a correct positioning in later

words of hr. For example y1 is located at hr(xpoint+1). The use of pgetd can lead

to errors for situations in which the length of arrays changes during execution, since in

these cases the value of the pointer xpoint can change. For such cases a call to pgetd

must be made prior to each reference involving xpoint. On the other hand, reference

CHAPTER 3. ALLOCATING ARRAYS 16

using the pointers defined in arrays NP or UP are adjusted each time an array changes

size. However, users must ensure that a calling sequence is not sensitive to a change

in pointer. One way pointer changes can still lead to errors is through a program

call subname (hr(np(111)), mr(np(112)),)

and then change the length of the array number ‘111’ or ‘112’ in the subroutine.

Chapter 4

USER FUNCTIONS

Users may add their own procedures to facilitate additional mesh input features, to per-

form transformations or manipulations on mesh data, to add new solution commands,

or to add new plot capabilities.

4.1 Mesh Input Functions - UMESHn.

To add a mesh input command a subprogram with the name UMESHn, where n has a

value between 0 and 9 must be written, compiled, and linked with the program. The

basic structure of the routine UMESH1 is:

The parameter TX is a character array which is assigned by the input and UPRT is a

logical parameter which is set to false when the NOPRint mesh command is given and

to true when the PRINt command is used (default is true). The common block UMAC1

transfers the character variable UCT to assign the name of the command. The default

name is MESn where n is the same as the routine name number. Assignment of a unique

character name (which must not conflict with names already assigned for mesh input

commands) should be used to replace the xxxx shown.

When FEAP begins execution it scans all of the UMESHn routines and replaces the

command names mes1, etc., by the user furnished names. Thus, when the command

HELP is issued while in interactive MESH mode, the user name will appear in the

list instead of the default name (note, FEAP does not always display all available

commands. To see all commands issue the command MANUal,3 and then the HELP

command).

17

CHAPTER 4. USER FUNCTIONS 18

subroutine umesh1(tx, uprt)

!-----[--.----+----.----+----.-------------------------------------]
! Purpose: User defined routine to input mesh data to FEAP

! Inputs:
! tx(*) - Command line input parameter name
! uprt - Flag, Output results if true

! Outputs:
! none - Users responsible for outputs to arrays, etc.
!-----[--.----+----.----+----.-------------------------------------]

implicit none

include ’umac1.h’ ! Contains UCT variable
character (len=15) :: tx(*)*15
logical :: uprt

! Set name ’mes1’ to user defined
if(pcomp(uct,’mes1’,4)) then

uct = ’xxxx’ ! Set user defined command name
elseif(ucount) then ! Count elements and nodes

elseif(urest.eq.1) then ! Read restart data

elseif(urest.eq.2) then ! Write restart data

else

! User execution function statements follow

end if

end subroutine umesh1

Figure 4.1: Sample UMESHn module

CHAPTER 4. USER FUNCTIONS 19

The ability to get array names as shown in Chapter 3 can be used to develop user

routines for input of coordinates, element connections, etc. With this facility it is

possible to develop an ability to directly input data prepared by other programs which

may be in a format which is not compatible with the requirements of standard FEAP

mesh commands.

4.1.1 Command line TX data

It is possible to include up to 8 data items on the command line for user functions. All

the data is passed to the UMESHn functions by the character array TX(*)*15 and may

be used to control actions in the function. If the information is of type character it

may be used directly, however, if it is numeric it must be converted within the UMESHn

function. before any additional input statements are processed. For example if a user

input function has the command line:

GETData VALUes 35

is developed in the user function UMESH1 the first argument GETData must match the

name assigned to UCT and will also be in TX(1). The second parameter will be in TX(2)

and the third in TX(3). To recover the numerical value for the third parameter the

statement statements

real (kind=8) :: ctl
...
call setval(tx(3),15, ctl)

may be used to assign the real value 35.0d0 to ctl. If necessary, the real value for ctl

can be cast into an integer using

itl = nint(ctl)

If more than 8 items are desired on the input line it is possible to recover their values

from the character string yyy*256 which has been parsed into columns with width 15

characters. Note that the total number of added words must be 15 items or less (this is

imposed by the total of 16 items on any FEAP input record). To recover their values

the statements

CHAPTER 4. USER FUNCTIONS 20

include ’chdata.h’
character (len=15) :: lct(15)*15
real (kind=8) :: rtl(15)
integer :: itl

are added to the user function and the items recovered in the else option of the

function using the statements:

lct(1) = yyy(16:30)
call setval(yyy(31:45),15, rtl(1))

would assign lct(1) values from the second set of 15 characters and rtl(1) to the

third set of 15 characters. In this case lct(1) = tx(2) and rtl(1) would have the same

value as ctl above.

If users wish to add more than 10 material models it is possible to use the user function

UMESH which has the form

4.1.2 Nodal coordinate inputs

A UMESH command is useful to input the nodal coordinates and element connectivity

from external mesh generation programs. The name of the data set to be read is

described by the part of a umesh

if(pcomp(uct,’mes*’,4)) then
uct = ’.....’ ! name should not conflict with any other

Often multiple nodal and element data sets are required to completely specify the

problem mesh. In some cases each of the data sets have node and element numbers

beginning with unity. Alternatively, the data may be given without any node or element

number and implicitly begin with unity. In these cases it is necessary to establish a

unique number for every node or element. In FEAP the *auto [see User Manual[1] for

details] may be used to create the unique numbers. For single data sets the command is

not needed. The descriptions below for nodes and elements describes how to program

for this feature.

For the input of nodal coordinate data, the number of nodal items can be determined

from the data either by counting the number of items, from a separate record, or

from the command data as described above using the tx data array. In FEAP this is

CHAPTER 4. USER FUNCTIONS 21

logical function umesh(cc,tx,prt)

!-----[--.----+----.----+----.---------------------------------------]
! Purpose: User mesh command interface

! Inputs:
! cc - User command option
! tx(*) - Command line input data
! prt - Output if true

! Outputs:
! none - Data stored by user development
!-----[--.----+----.----+----.---------------------------------------]

implicit none

logical :: prt,pcomp
character (len= 4) :: cc
character (len=15) :: tx(*)

! Match on ’USER’: Add as many checks as desired with ’user’

if(pcomp(cc,’xxxx’,4)) then ! Provide name for ’xxxx’

umesh = .true. ! Activate command
.....

elseif(.........

endif

end logical function umesh

Figure 4.2: Sample UMESH module

CHAPTER 4. USER FUNCTIONS 22

established by either reading the mesh data once before the input phase or specifying

the actual numbers on the control record. For user mesh modules umeshn [n=0:9], once

known for each data set the number should be returned as:

elseif(ucount) then
unumnp = "number of nodes in data set"

where unumnp is found in

include ’umac1.h’

This allows FEAP to determine the total number of nodes in a mesh, even if multiple

data sets are used to describe the coordinates.

The actual input of the data may be performed by adding the two include files

include ’pointer.h’ ! np(*) pointers
include ’comblk.h’ ! mr(*) and hr(*) arrays

and then adding a call as:

else
call unode_xxxx(hr(np(43)),mr(np(190)) ...)

where umesh xxxx is a user defined module in which hr(np(43)) is the location of the

nodal coordinate data and mr(np(190)) is the location of the nodal activation data.

By default all the numnp coordinates are marked as not defined in this array. The

module unode xxxx may be given as:

subroutine unode_xxxx(x, ndtyp,)

implicit none

include ’cdata.h’ ! numnp
include ’sdata.h’ ! ndm
include ’dstars.h’ ! starnd, starel

integer :: ndtype(numnp)
real (kind=8) :: x(ndm,numnp)

....
! Loop over data set,input local node "n" and set node number

nod = n + starnd ! For *AUTO data inputs
x(:,nod) = ! Input values
ndtyp(nod) = 0 ! Activate node
.... ! After all data inputs
starnd = starnd + .. ! Add number input items

CHAPTER 4. USER FUNCTIONS 23

The critical part is setting the correct mesh node number and activating the node.

By default starnd (and starel) are zero at the begging of mesh inputs. The starnd

parameter keeps track of how many total nodes have been described.

4.1.3 Element connectivity inputs

For UMESH modules used to input connectivity and material set numbers into the

IX(NEN1,NUMEL) the type of element should be inserted into the position IX(NEN+7,*)

for each element. The value to be inserted is shown in the Feap Value column of Ta-

ble 4.1. The table also shows the element forms that will be displayed when using a

ParaView output command.

TYPE Nodes/ Feap ParaView
Parameter Element Value Value
LINE 2 -1 3

3 -1 21
TRIAngle 3 -2 5

6/7 -2 22
10 -2 -

QUADrilateral 4 -3 9
8/9 -3 23

12/16 -3 -
TETRahedron 4 -4 10

10 -4 24
HEXAhedron 8 -5 12

20/27 -5 25
64 -5 -

WEDGe 6 -6 13
PYRAmid 5 -7 14

Table 4.1: Element TYPE specification on connectivity input.

A umeshn module may be used to input the nodal connection date in a similar manner

to that used for nodal coordinate input. Accordingly, the number of elements in the

data set is returned as:

elseif(ucount) then
unumel = "number of elements in data set"

where unumel is found in

CHAPTER 4. USER FUNCTIONS 24

include ’umac1.h’

This allows FEAP to determine the total number of elements in a mesh, even if multiple

data sets are used.

The actual input of the element data may be performed by adding the two include files

include ’pointer.h’ ! np(*) pointers
include ’comblk.h’ ! mr(*) and hr(*) arrays

and then adding a call as:

else
call uelmt_xxxx(mr(np(33)),) ...)

where uelmt xxxx is a user defined module in which mr(np(33)) is the location of

the element connection data. By default all elements are marked as not input by a

large negative material set number for each element “e” in ix(nen1,e). The module

uelmt xxxx may be given as:

subroutine uelmt_xxxx(ix,)

implicit none

include ’cdata.h’ ! numel
include ’sdata.h’ ! nen1
include ’dstars.h’ ! starnd, starel

integer :: ix(nen1,numel)
....

! Loop over data set,input local element "e" and set global number
eg = e + starel ! For *AUTO data inputs
ixl(1:nel) = ! Sets local node number
ix(1:nel,eg) = ixl(1:nel) + starnd ! Sets global node number
ix(nen1,eg) = ! Set material set number
ix(nen+7,eg) = ! Set element shape type
.... ! After all data inputs
starel = starel + .. ! Add number input items

The critical part is setting the correct mesh node and element numbers. using the

current starnd and starel values. By default starnd (and starel) are zero at the

begging of mesh inputs. The starel parameter above keeps track of how many total

elements have been described.

CHAPTER 4. USER FUNCTIONS 25

subroutine umani1

! User defined routine to manipulate mesh data for FEAP

implicit none

include ’umac1.h’ ! Contains UCT variable

! Set name ’man1’ to user defined
if(pcomp(uct,’man1’,4)) then

uct = ’xxxx’ ! Set user defined command name

! User execution function statements follow
else

end if

end subroutine umani1

Figure 4.3: Sample UMANLn module

4.2 Mesh Manipulation Functions - UMANIn.

The UMANIn modules, where n ranges from 0 to 9, may be used to perform trans-

formations or manipulations on previously prescribed data. These commands appear

between the mesh input END command and the first INTEractive or BATCh solution com-

mand. To add a mesh manipulation command a subprogram with the name UMANIn,

where n has a value between 0 and 9 must be written, compiled, and linked with the

program. The basic structure of the routine UMANI1 is:

The common block UMAC1 transfers the character variable UCT for the name of the

command. The default names are MANn where n is the same as the routine name

number. Assignment of a unique character name (which must not conflict with names

already assigned for mesh input commands) should be used to replace the xxxx shown.

After FEAP completes the input of mesh data it scans all of the UMANIn routines and

replaces the command names man1, etc., by the user furnished names.

The ability to get array names as shown in Chapter 3 can be used to develop user

routines for manipulation of the mesh data. For example, if a user has added the

specification of information by coordinates it may later be necessary to associate the

data with specific node numbers. This can be accomplished using a manipulation

command which searches for the node number whose coordinates are closest to the

specified location.

CHAPTER 4. USER FUNCTIONS 26

subroutine umacr0(lct,ctl)

! User solution command function

implicit none

include ’umac1.h’ ! Contains the variable UCT

character (len=15) :: lct*15
real (kind=8) :: ctl(3)

! Set command word
if(pcomp(uct,’mac0’,4)) then

uct = ’xxxx’

! User command statements are placed here
else

endif

end subroutine umacr0

Figure 4.4: Sample UMACRn module

4.3 Solution Command Functions - UMACRn.

In a similar manner, users may add solution commands to the program by adding a

routine with the name UMACRn where n ranges from 0 to 9.

The parameters LCT and CTL are used to pass the second word of a solution command

and the three parameter values read, respectively. Again the name xxxx should be

selected to not conflict with existing solution command names and will appear whenever

HELP is issued.

4.4 Plot Command Functions - UPLOTn.

In a similar manner, users may add new plot commands to the program by adding a

routine with the name UPLOTn where n ranges from 0 to 9.

The parameters CTL(3) are used to pass the three parameter values read, respectively.

Again the name xxxx should be selected to not conflict with existing plot command

names and will appear whenever HELP is issued.

CHAPTER 4. USER FUNCTIONS 27

subroutine uplot0(ctl)

! User plot command function

implicit none

include ’umac1.h’ ! Contains the variable UCT

real (kind=8) :: ctl(3)

! Set command word
if(pcomp(uct,’plt0’,4)) then

uct = ’xxxx’

! User plot command statements are placed here
else

endif

end subroutine uplot0

Figure 4.5: Sample UPLOTn module

4.4.1 Plot of lines and filled panels

Two plot utilities are available for placing lines on the screen. These are named DPLOT

and PLOTL. The calling form for DPLOT is given as

call dplot(s1,s2,ipen)

where s1, s2 are screen coordinates ranging from 0 to 1. Similarly, the calling sequence

for PLOTL is

call plotl(x1,x2,x3,ipen)

where x1, x2, x3 are coordinates values of the mesh. The value of ipen ranges from

1 to 3: 1 starts a filled panel; 2 draws a line from the current previous point to the

new point; 3 moves to the new point without drawing a line. If a filled panel is started

it must be closed by inserting the statement

call clpan()

CHAPTER 4. USER FUNCTIONS 28

4.4.2 Plot numbers

Positive and negative integer numbers may be plotted using the module

call plabl(n)

where n is the integer to place in the plot region. Prior to using a move to the plot

location should be made using the dplot or plotl routines described above.

4.4.3 Plot text

Text may be placed in the plot region using the call

call pltext(x,y,il,string)

where x, y are screen coordinates and len is the length of the string of text to place.

4.4.4 Plot colors

Lines are drawn or panels filled in the current color. A color is set using the statement

call pppcol(color, switch)

where color is an integer defining the color number and switch should be zero. The

color values are given in Table 4.2.

4.5 User Material Models

Users may add material models to elements by appending subprograms UMATIn and

UMATLn (where n have values from 0 to 9) to the FEAP system. The subprogram

UMATIn defines the input of parameters used by the model and the subprogram UMATLn

is called by the element for each computation point (i.e., the quadrature point), receives

the value of a deformation measure as input and must return the value of stress and

tangent moduli as output.

CHAPTER 4. USER FUNCTIONS 29

Number Color Number Color
0 Black 10 Green-Yellow
1 White 11 Wheat
2 Red 12 Royal Blue
3 Green 13 Purple
4 Blue 14 Aquamarine
5 Yellow 15 Violet-Red
6 Cyan 16 Dark Slate Blue
7 Magenta 17 Gray
8 Orange 18 Light Gray
9 Coral

Table 4.2: Color Table for Plots

To activate a user material model the input data for the mesh MATErial command

must include a statement with UCON as the first field. For example in a solid element

the command sequence can be

MATErial ma
SOLId

UCONstitutive xxxx v1 v2 ...
! Blank termnation record

The role of the xxxx and vi data will be described in Section 4.5.1.

It is possible to use standard input parameters defined in Tables 5.5 to 5.5, as well, by

preceding the UCON command with a normal input sequence. For example, if isotropic

elastic properties are needed they may be included in the input sequence as

MATErial ma
SOLId

ELAStic ISOTropic e nu
UCONstitutive xxxx v1 v2 ...

! Blank termnation record

No standard commands should follow the UCON command.

Alternatively, users may input elastic properties as part of their UMATIn module. For

example, the sample module shown in Figure 4.6 would input the data as

MATErial ma

CHAPTER 4. USER FUNCTIONS 30

SOLId
UCONst E_1d e ! e = Young’s modulus

! Blank termnation record

If the user routine does input additional data records (after the UCON record) and these

are terminated by a blank record, a second blank record will be needed to discontinue

material data input for this set. In all cases at least one blank record is always needed

to terminate the input of standard options for the material set. Extra blank records

may always be used without causing problems

4.5.1 The UMATIn Module

A sample module for a user constitutive model is shown in Fig. 4.6. As shown in this

figure, the UMATIn module has 5 arguments. The name of the constitutive equation

to be described is passed in the first parameter type. The second parameter passes

an array (vv(*)) which may be used to define up to 5 parameters for the material

model. The example shown above for the UCON includes the type data as xxxx and

the array vv(*) values as v1 v2 Users may also provide additional input within

the UMATIn module using the routines PINPUT or TINPUT described in Sect. 2.1. The

values of user parameters must be saved in the array ud(*) (the fourth argument

of UMATIn). In the current version there are 150 words of double precision values

available by default. Additional values may be allocated by assigning a larger value

on the control record (first record after the FEAP title record). Each material model is

assigned a user material number to the return parameter umat. This number must be

a positive integer. Finally, the number of history parameters to be assigned to each

computation (quadrature) point must be returned in the parameter n1. Currently, the

parameter n3 may be set but is not available to the user material model. Thus, all

history variables must be retained in the n1 list. Use of history variables is described

later as part of the UMATLn module.

4.5.2 The UMATLn Module

In preparing user material models for FEAP it is recommended that the develop be

made for a general three-dimensional model. In this way the material can work properly

in conjunction with both the two-dimensional plane and axisymmetric solids as well as

the general three-dimensional elements.

The UMATLn module is used to compute the stress and tangent moduli at time tn+1

CHAPTER 4. USER FUNCTIONS 31

subroutine umati1(type,vv, d, ud, n1,n3)
!-----[--.----+----.----+----.-------------------------------------]
! Purpose: User material model interface

! Inputs:
! type - Name of constitutive model (character variable)
! vv(*) - Parameters: user parameters from command line
! d(*) - Program material parameter data

! Outputs:
! n1 - Number history terms: nh1,nh2
! n3 - Number history terms: nh3
! ud(*) - User material parameters
!-----[--.----+----.----+----.-------------------------------------]

implicit none

include ’iofile.h’
logical :: pcomp
character (len=15) :: type*15
integer :: n1,n3
real (kind=8) :: vv(5),d(*),ud(*)

! Specify type of user model

if(pcomp(type,’mat1’,4)) then
type = ’E_1d’ ! Specify new name for model

! Input/output user data and save in ud(*) array

else

! Set values of ’n1’ if required
n1 = ...

write(iow,*) ’ User Constitutive Inputs: E = ’,vv(1)
ud(1) = vv(1) ! Parameter from input on command name

endif

end subroutine umati1

Figure 4.6: Sample UMATI1 module

CHAPTER 4. USER FUNCTIONS 32

from the supplied deformation measure at time tn+1. For small strain the supplied

deformation measure is the linear strain which is ordered as

ε =
[
ε11 ε22 ε33 γ12 γ23 γ31

]
To access the strain at time tn it is necessary to dimension the strain array as eps(9,*);

with eps(9,1) providing the tn+1 strains and eps(9,2) the tn strain. Note the first

dimension is 9, however, only the first six entries are used for the small strain model.

In finite strain the deformation gradient and the displacement gradient at times tn+1

and tn are passed to the UMATLn module in the array f(3,3,4). The array f(3,3,1)

stores the value of the deformation gradient at tn+1; f(3,3,2) stores the deforma-

tion gradient at the time tn; f(3,3,3) stores the displacement gradient at tn+1; and

f(3,3,4) stores the displacement gradient at tn. The displacement gradient G is given

by

G = F− I

where I is the unit tensor (or identity matrix). FEAP computes the displacement

gradient and then adds the identity. Thus using the displacement gradient as much as

possible is recommended to avoid round-off when it is very small. It is recommended

users study some of the models included in the library to see how developments can be

made for various deformation measures.

Although the basic finite deformation measure passed has nine components, both the

small and the finite strain user models must return only six components of stress and

their associated tangent moduli. The stresses and moduli are returned in a Voigt

notation in the order

σ =
[
σ11 σ22 σ33 τ12 τ23 τ31

]
The two-dimensional solid elements (located in the directory ./elements/solid2d)

include formulations for plane stress, plane strain, axisymmetric without torsion and

axisymmetric with torsion. Table 4.3 describes the stress components used in each

formulation and the values of the associated variable stype (see Table 5.5) to define

each type of analysis.

However, coding a user material model for full 3-d analysis is always recommended.

All standard FEAP solid elements pass the unused 3-direction strain or deformation

measures with a zero value.

A sample for the UMATL1 module with arguments defined for small deformation is shown

in Fig. 4.7 and for arguments defined for finite deformation in Fig. 4.8. This subpro-

gram will be called by many of the elements included within FEAP if a user model

CHAPTER 4. USER FUNCTIONS 33

Analysis Type stype Stress components used
Plane Stress 1 σ11, σ22, τ12

Plane Strain 2 σ11, σ22, τ12

Torsionless Axisymmetric 3 σ11, σ22, σ33, τ12

Axisymmetric with Torsion 8 All 6 stress components

Table 4.3: Stress components used in 2-D analyses.

has been specified as part of the MATE mesh data (see previous subsection). The user

model will not be called for truss, frame, plate, and shell elements which use resultant

models to describe behavior. Also, any form which requires a one-dimensional model

will not use a UMATLn module. The module is designed to compute three-dimensional

constitutive models in which the stress and strain are stored as 6-component vectors

and the tangent moduli as a 6× 6 matrix.

Small deformation models

For small deformation models the strains are passed to UMATLn in the argument array

eps(6) and stored in the order

ε =
[
ε11 ε22 ε33 γ12 γ23 γ31

]T
where γij = 2 εij is the engineering shearing strain. Stress and moduli are to be

associated with the same ordering and returned in the argument arrays dimensioned as

sig(6) and dd(6,6), respectively. All real values are in double precision (i.e., REAL*8).

When UMATLn is called the model n will be that which is defined in the module UMATIn.

Current values of the strains are, as mentioned above, passed in the array eps(6) and

the trace of the strain in the parameter theta. Thus,

θ = εii = ε11 + ε22 + ε33 .

In addition, if thermal problems are being solved the current value for the temperature

is passed as td. All material parameters for the current model are passed in the arrays

d(*) and ud(*). The array d(*) contains parameters assigned by standard FEAP

commands as described in Tables 5.5 to 5.5 and the array ud(*) contains values as

assigned in the user module UMATIn.

Other values for use in writing material models can be obtained from parameters in

common blocks. For models which depend on position in the body the values of the

CHAPTER 4. USER FUNCTIONS 34

reference and current coordinates for the constitutive point are passed in common block

elcoor which contains the values in

real (kind=8) :: xref ,xcur

common /elcoor/ xref(3),xcur(3)

For models that may need to use an incremental formulation with

∆ε = εn+1 − εn

the array for strains may be dimensioned as eps(9,2) where the first 6 entries of

eps(9,1) store the strains at tn+1 and the first 6 entries of eps(9,2) store those at

tn. The extra entries are not defined as they are provided only for use in the finite

deformation form of the model described next.

Finite deformation models

For finite deformation models the deformation gradient is passed to UMATLn in the ar-

gument array f(3,3,4) where f(3,3,1) defines Fn+1, f(3,3,2) defines Fn, f(3,3,3)

defines Gn+1 and f(3,3,4) defines Gn. The deformation gradient is stored as

f(i,J,1) = FiJ(tn+1)

f(i,J,2) = FiJ(tn)

f(i,J,3) = GiJ(tn+1) = FiJ(tn+1)− δiJ and

f(i,J,4) = GiJ(tn) = FiJ(tn)− δiJ

where GiJ are displacement gradients. Stress and moduli are to be returned in the

argument arrays dimensioned as sig(6) and dd(6,6), respectively. Cauchy stresses

and their moduli are returned using Voigt notation where stresses are ordered as

σ =
[
σ11 σ22 σ33 σ12 σ23 σ31

]T
with corresponding order for the moduli. All real values are in double precision (i.e.,

REAL*8).

When UMATLn is called the model n will be that which is defined in the module UMATIn.

Current values of the deformation gradient are, as mentioned above, passed in the array

f(3,3,4) and the determinant of the deformation gradient in the parameter theta(4)

where

θ1 = det Fn+1 and θ2 = det Fn

CHAPTER 4. USER FUNCTIONS 35

subroutine umatl1(eps,theta,td,d,ud,hn,h1,nh,ii,istrt,sig,dd,isw)

!-----[--.----+----.----+----.--]
! Purpose: User Constitutive Model

! Input:
! eps(*) - Current strains at point
! theta - Trace of strain at point
! td - Temperature change
! d(*) - Program material parameters
! ud(*) - User material parameters
! hn(nh) - History terms at point: t_n
! h1(nh) - History terms at point: t_n+1
! nh - Number of history terms
! ii - Current point number
! istrt - Start state: 0 = elastic; 1 = last solution
! isw - Solution option from element

! Output:
! sig(6) - Stresses at point.
! dd(6,6) - Current material tangent moduli

!-----[--.----+----.----+----.--]
implicit none

integer :: nh,ii,istrt, isw, i
real (kind=8) :: td
real (kind=8) :: eps(*),theta(*),d(*),ud(*),hn(nh),h1(nh)
real (kind=8) :: sig(6),dd(6,6)

! Dummy model: sig = ud(1)*eps

if(isw.eq.14) the ! Set initial values for history parameters

! None needed for this model

! Compute tangent and stress

else

do i = 1,6
dd(i,i) = ud(1)
sig(i) = ud(1)*eps(i)

end do

endif

end subroutine umatl1

Figure 4.7: Sample UMATLn module for small deformation

CHAPTER 4. USER FUNCTIONS 36

In addition

θ3 = det Fn+1 − 1 and θ4 = det Fn − 1

If thermal problems are being solved the current value for the temperature is passed as

td. All material parameters for the current model are passed in the arrays d(*) and

ud(*). The array d(*) contains parameters assigned by standard FEAP commands

as described in Tables 5.5 to 5.5 and the array ud(*) contains values as assigned in

the user module UMATIn.

Other values for use in writing material models can be obtained from parameters in

common blocks. For models which depend on position in the body the values of the

reference and current coordinates for the constitutive point are passed in common block

elcoor which contains the values in

real (kind=8) :: xref ,xcur

common /elcoor/ xref(3),xcur(3)

Internal variable storage and use

For constitutive equations with additional (internal) variables that evolve in time, users

must define entries for the h1(*) array. The number of entries available in the array

for each evaluation (i.e., each quadrature point) is nh. The value for nh is defined by

the parameter n1 in module UMATIn (see Fig. 4.6). Values from the previous time step

are passed back to the module in the array hn(*) (which also contains nh entries).

Users should never modify entries in the hn(*) array. Finally, the values of the

element operation switch is passed as the parameter isw (See Chapter 5 for operations

performed during different values of isw).

In particular, when isw=14 any non-zero values for internal variables must be set.

It is not necessary to set zero values. Generally, for other values of isw and using

the above information, users must compute values for the stress and the associated

tangent matrix. These are returned to the element in the arrays sig(6) and dd(6,6).

In addition, updates for any of the history parameters must be assigned in the array

h1(*) and returned to the element. Values of history variables returned are not used

for all values of isw (e.g., when reporting or projecting stresses under isw = 4 and isw

= 8 they are not saved). Values retained in the h1(*) array are copied to the hn(*)

array each time the command statement TIME is issued in a solution.

CHAPTER 4. USER FUNCTIONS 37

subroutine umatl1(f,detf,td,d,ud,hn,h1,nh,ii,istrt,sig,dd,isw)

!-----[--.----+----.----+----.-------------------------------------]
! Purpose: User Constitutive Model

! Input:
! f(3,3,*)- Deformation gradient (finite deformation)
! detf(*) - Determinant of deformation gradient
! td - Temperature change
! d(*) - Program material parameters
! ud(*) - User material parameters
! hn(nh) - History terms at point: t_n
! h1(nh) - History terms at point: t_n+1
! nh - Number of history terms
! ii - Current point number
! istrt - Start state: 0 = elastic; 1 = last solution
! isw - Solution option from element

! Output:
! sig(6) - Stresses at point.
! dd(6,6) - Current material tangent moduli
!-----[--.----+----.----+----.-------------------------------------]

implicit none

integer :: nh,istrt, ii, isw
real (kind=8) :: td
real (kind=8) :: f(3,3,*),detf(*),d(*),ud(*),hn(nh),h1(nh)
real (kind=8) :: sig(6),dd(6,6)

! Model:

if(isw.eq.14) then ! Set any initial values for history

else ! Compute model tangent and stress

...

endif

end subroutine umatl1

Figure 4.8: Sample UMATLn module for finite deformation

CHAPTER 4. USER FUNCTIONS 38

4.5.3 Accessing element and nodal data

In some user material models it is necessary to relate the behavior to additional data,

such as an orientation field or other nodal related data. This may be accessed by

retrieving the current element number from the common block eldata, which may be

included in the umatl module using

include ’eldata.h’ ! n_el & ma values

and using the integer parameter ’n el’ (which is the current element number being

processed).1 The value of the material model, ’ma’ begin processed is also available in

the same include. With this information it is possible to access the element connection

array ix(nen1,numel) using its pointer. This may be most easily obtained by adding

statements of the form

include ’pointer.h’ ! np(*) values

include ’comblk.h’ ! hr(*) & mr(*) arrays

....

call sub...(n_el,mr(np(33)), ..) ! np(33) = ix pointer

and the subroutine using

subroutine sub...(n_el, ix, ..)

implicit none

include ’eldata.h’ ! nel value

include ’sdata.h’ ! nen1 value

integer (kind=4) :: ix(nen1,*)

...

do i = 1,nel

node = ix(i,n_el)

...

Once the value of node is known other arrays may be used, for example nodal orienta-

tion arrays defined by the programmer as umesh modules, etc.

All FEAP arrays are similarly available in any module a programmer wants to develop.

1Earlier versions may use n as the element number.

CHAPTER 4. USER FUNCTIONS 39

4.5.4 Auto time step control

The solution command:

AUTO MATErial rvalu(1) rvalu(2) rvalu(3)

initiates an attempt to control the solution process by a variable time stepping algo-

rithm based on a user set value in the material constitution. The value to be set is

named rmeas which is passed between constitution and solution modules in the labeled

common

real (kind=8) :: rmeas,rvalu

logical :: aratfl

common /elauto/ rmeas,rvalu(3),aratfl

The three parameters may be used in defining an acceptable value for rmeas. The

algorithm coded monitors the solution during a standard iteration process set by, for

example:

LOOP,,n

TANG,,1

NEXT

If during any iteration up to n the value of rmeas exceeds a value of 2 (rmeas = 0 at

the start of the loop) a new value of ∆t is immediately set to

∆tnew = 0.85 ∆t/rmeas

and the iteration process is started over. On the other hand if convergence occurs

during the time step and the value of rmeas is smaller than 1.25, the time step is

adjusted according to

∆tnew = 1.50 ∆t ; rmeas ≤ 0.5
∆tnew = 1.25 ∆t ; 0.5 < rmeas ≤ 0.8
∆tnew = ∆t/rmeas ; 0.8 < rmeas

Finally, if convergence does not occur with in the n steps, then the time step is reset

according to
∆tnew = 0.85 ∆t/rmeas ; 1.25 < rmeas
∆tnew = ∆t/3 ; otherwise.

CHAPTER 4. USER FUNCTIONS 40

After any of the above adjustments the value of rmeas is reset to zero (0).

An optimal value of rmeas is 1.25 – which leaves the step unchanged. The above

algorithm was proposed by Weber et al. [2].

4.5.5 Push forward routines

When developing constitutive models it is often necessary to push quantities forward

from the reference configuration to the current configuration. For example, a vector VI
in the reference configuration can be pushed forward to the current configuration as

vi =
1

J
FiI VI

In elements included in the program the deformation gradient is computed at the

current time and the previous (converged) time; in addition the displacement gradient

is also computed at the same times. The displacement gradient is expressed as

FiI = δiI +GiI

where δiI is an identity tensor. A utility routine to push forward a vector is accessed

using

call pusht1(F, V, v, J, flag)

where F(3,3) is the displacement gradient if the logical parameter flag is true and

is the deformation gradient if flag is false. The array V(3) passes the reference

configuration vector and v(3) returns the current configuration vector. The parameter

J may be passed as the determinant of the deformation gradient, or if no scaling is

required as unity. The same routine may also be used to perform a pull back from

the current configuration to the reference configuration by replacing the deformation

gradient by its inverse.

The push forward of a second rank tensor is given by

aij =
1

J
FiIAIJFjJ

and may be implemented using the call

call pusht2(F, A, a, J, flag)

CHAPTER 4. USER FUNCTIONS 41

where F(3,3) is the displacement gradient when the logical parameter flag is true and

the deformation gradient when the logical parameter flag is false.

The above two routines work directly with the tensor components; however, routines

also are provided that work in Voigt notation. For a symmetric second rank tensors

the routine is

call pushr2(f, S, s, J)

where S(6) is the reference configuration tensor ordered as

SI =
[
S11 S22 S33 S12 S23 S31

]
and the current configuration s(6) in Voigt notation by

si =
[
s11 s22 s33 s12 s23 s31

]
The deformation gradient is F(3,3) and J is its determinant. Note that in some

instances FEAP stores the deformation gradient as a 9-component vector ordered as

FiI =
[
F11 F21 F31 F12 F22 F32 F13 F23 F33

]
This ordering permits passing the array in either the 9-component F(9) form or in the

two index F(3,3) form with identical result.

The push forward of fourth-order tensors (e.g., material moduli) is accomplished in

Voigt notation as

d =
1

J
TT
l D Tr

which in index form is given by

dij =
1

J
T lkiDklTrlj

here all arrays are of size 6 and for some algorithms the l and r indices are different.

This form is used to replace the tensor form

cijkl =
1

J
F1iIF2jJCIJKLF3kKF4lL

Thus, it is necessary to first map the left side deformation gradient F1 and F2 onto the

Tl matrix. This is accomplished using the Voigt ordering and implemented by calling

the routine

T lNm ← F1iI F2jJ ; N for IJ ; n for i, j

The above may be performed using

CHAPTER 4. USER FUNCTIONS 42

call tranr4(F1, F2, Tl, flag)

where F1 and F2 are displacement gradients when flag is true otherwise deformation

gradients when false. If the algorithm has all different descriptions for the various Fi

then the routine may need to be called twice. Once the Tl, Tr are known the fourth

rank tensor in Voigt notation is pushed forward using

call pushr4(Tl, Tr, D, d, J)

in which all arrays are of size 6.

4.5.6 Polar decompositions

The right polar decomposition of the deformation gradient is given by the relation

FiJ = RiI UIJ (4.1)

where RiI is a rotation and UIJ the right stretch tensor. The rotation tensor satisfies

the orthonormal relation

RiI RiJ = δIJ (4.2)

The computation of the stretch tensor may be obtained from the square root of the

right Cauchy-Green tensor since

CIJ = FiI FiJ = RiKUKI RiLULJ = UKIUKJ (4.3)

If the deformation gradient is written in terms of the displacement gradient as

FiI = δiI +GiI (4.4)

then

CIJ − δIJ = δiIGiJ + δiJGiI +GiIGiJ = HIJ (4.5)

The result HIJ may be written in the spectral form

HIJ =
3∑

a=1

NaIλaNaJ (4.6)

which may then be used to compute the stretch tensor as

UIJ =
3∑

a=1

NaI(1 + λa)
1/2NaJ (4.7)

CHAPTER 4. USER FUNCTIONS 43

and also its inverse as

U−1
IJ =

3∑
a=1

NaI(1 + λa)
−1/2NaJ (4.8)

The rotation tensor may then be obtained from

RiI = FiJ U
−1
JI = δiJ UJI +GiJ UJI (4.9)

The left polar decomposition is expressed as

FiI = Vij RjI (4.10)

which has a similar solution as that described above.

Polar decomposition in FEAP

Users may include the right polar decomposition algorithm in modules programmed in

Fortran by including including:

call polar_ru(f, r, u, flag}

where f(3,3) is the deformation gradient when flag=.true.; and the displacement

gradient if flag=.false.. The value of the rotation is returned in the array r(3,3)

and the right stretch in u(3,3).

The left polar decomposition may be obtained using

call polar_vr(f, v, r, flag}

where f(3,3) is the deformation or displacement gradient depending on whether flag

is true or false, respectively. The return values are the left stretch tensor v(3,3) and

the rotation r(3,3).

4.5.7 Numerical differentiation: Complex step

In developing constitutive modules for FEAP it is often quite easy to determine the

expression for the stress (or derived variable) but may be more difficult to obtain the

linearization for the algorithmic tangent matrix (moduli in the case of stress). For these

situations a numerical method of differentiation becomes attractive and useful. Indeed,

CHAPTER 4. USER FUNCTIONS 44

in FEAP it is possible to compute an estimate to the the tangent stiffness matrix

using the command: TANG NUMErical. In order to use modules without modification

the differentiation is done using a simple finite difference approximation for the first

derivative of the residual vector.

As an alternative to derivatives in real arithmetic a very accurate computation may

be obtained by performing the derivative in complex arithmetic. As a simple example

consider the complex scalar function

f(z) = f(u+ ih) (4.11)

where f(u) is a real function and h a parameter in the direction of u. A series expansion

around the point u is given by

f(u+ ih) = f(u) + ih f ′(u)− 1
2!
h2 f ′′(u)− 1

3!
ih3f (3)(u) · · · (4.12)

Taking the real part of the expansion gives

<f(u+ ih) = f(u)− 1
2!
h2 f ′′(u) · · · (4.13)

Similarly taking the imaginary part gives

=f(u+ ih) = h f ′(u)− 1
3!
h3f (3)(u) · · · (4.14)

Thus, assuming higher derivative behave smoothly, one may take a small value for h

and obtain the derivative to numerical precision from

f ′(u) = =f(u+ ih)/h (4.15)

Similarly, to numerical precision,

f(u) = <f(u+ ih) (4.16)

For the development of a constitutive relation or an element stiffness matrix, the

scalar functions f and u may be replaced by vectors and the derivative carried out

by perturbations on each component independently. This results in columns of the

derivative (tangent array) for each perturbation. This method is called a complex step

algorithm.[3, 4, 5, 6, 7, 8, 9, 10, 11, 12] Development of modules in Fortran are quite easy to

incorporate complex arrays and variables using the declaration

complex (kind=8) :: <list of variables>

In addition most intrinsic functions (e.g., exp(z)) may also be used with complex argu-

ments z. This makes the complex step method very attractive for use in constructing

the required tangents.

Chapter 5

ADDING ELEMENTS

FEAP permits users to add their own element modules to the program by writing a

single subprogram called

subroutine elmtnn(d,ul,xl,ix,tl,s,r,ndf,ndm,nst,isw)

where nn may have values between 01 and 50 or for interface type elements by adding

a single module called

subroutine intf0n(d,ul,xl,ix,tl,s,r,ndf,ndm,nst,isw)

where n has values between 2 and 5. The basic steps for either form are identical.

Copies of a required framework for all user elements are located in the ./user directory.

Each element module has the basic structure required for implementation of the steps

described below. Most are set using an if-then-else form (as shown in Figure 5.1),

however, elmt11.f is set using a select-case form (as shown in Figure 5.2) and may

be substituted in the others if desired.

Build of executable

To add a user element:

• Copy the module elmtnn.f (where nn is between 01 and 50) from the directory

./user to the directory where the development will be made. Do not delete the

module in the ./user directory. Do not change the name of the elmtnn.f routine

or any of the variables in the argument list.

• Build an archive (library module) of the program (including all the routines in

the ./user directory).

45

CHAPTER 5. ADDING ELEMENTS 46

• Build the final program by combining the archive with: (a) the main program

feap86.f which is located in the ./main directory; and (b) the new element

module elmtnn.f and any other new routines called by the element.

Hint: It is recommended that a temporary write be added as the first executable

statement of the new element routine to ensure that the correct routine is accessed.

Structure of element

The basic structure for an element routine is shown in Figures 5.1 Part1 and Part 2.

Information is provided to the element subprogram through data passed as arguments

and data passed in common blocks. The data passed as arguments consists of eleven

(11) items which are briefly described in Table 5.11.

FEAP carries out tasks according to the parameter value, ISW, passed to the ELMTnn

subprogram. A short description of the current task carried out by each value is given

in Table 5.2.

To use basic solutions available in FEAP it is necessary to program tasks in Table 5.2

1Note in Table 5.1 that FEAP transfers the values for most of the solution parameters in array
UL(NDF,NEN,*) at time tn+a, where a denotes a value between 0 and 1. The value of a is 1 (i.e.,
values are reported for time tn+1) unless generalized midpoint integration methods are used. For the
present we will assume a is 1.

subroutine elmtnn(d,ul,xl,ix,tl,s,r,ndf,ndm,nst,isw)

! Prototype FEAP Element Routine: nn = 01 to 50

implicit none

! Common blocks: See Figure 5.2.
integer :: ndf,ndm,nst,isw
integer :: ix(*)
real (kind=8) :: d(*),ul(ndf,*),xl(ndm,*),tl(*)
real (kind=8) :: s(nst,nst),r(nst)

if(isw. lt. 0) then
utx(1) = ’Name_U_Want’ (Name of element type)

elseif(isw.eq.0 .and. ior.lt.0) then
! Return: Output of element description

write(*,*) ’ Elmt 1: Element description’
..

Figure 5.1: FEAP Element Subprogram. Part 1.

CHAPTER 5. ADDING ELEMENTS 47

elseif(isw.eq.1) then
! Input/output of property data after command: ’mate’
! d(*) stores information for each material set
! Return: pstyp = <0,1,2,3> for dimension of mesh plots
! Return: istv = maxiumum number of element projections
! (default: project 8 quantities)
! Return: nh1 = number of nh1/nh2 words/element
! Return: nh3 = number of nh3 words/element

elseif(isw.eq.2) then
! Check element for errors. Negative jacobian, etc.

elseif(isw.eq.3) then
! Return: Element coefficient matrix and residual
! s(nst,nst) element coefficient matrix
! r(ndf,nen) element residual
! hr(nh1) history data base: previous time step
! hr(nh2) history data base: current time step
! hr(nh3) history data base: time independent

elseif(isw.eq.4) then
! Return: Output element quantities (e.g., stresses)

elseif(isw.eq.5) then
! Return: Element mass matrix (imtype = 1)
! Return: Element geometric tangent (imtype = 2)
! s(nst,nst) consistent matrix/geometric tangent
! r(ndf,nen) diagonal matrix

elseif(isw.eq.6) then
! Return: Residual only
! r(ndf,nen) element residual

elseif(isw.eq.7) then
! Return: Surface loading for element
! s(nst,nst) coefficient matrix
! r(ndf,nst) nodal forces

elseif(isw.eq.8) then
! Return: Element projections to nodes (diagonal)
! p(nen) projection weight: wt(nen)
! s(nen,*) projection values: st(nen,*)
! Return: iste = number of projections

endif
end subroutine elmtnn

Figure 5.1: FEAP Element Subprogram. Part 2.

CHAPTER 5. ADDING ELEMENTS 48

labeled as R. Elements with local variables that need to be retained between subsequent

time steps (history variables) are defined as described in Section 5.7. In this case it

may be necessary to code Task 12 for any variable transformation. Task 14 is used to

set non-zero initial values of history variables (zero values are set by default). Finally,

if special plotting options are desired it may be necessary to program Task 20 (contours

for element variables such as stress, strain, etc. are computed in Task 8).

It is not necessary to implement optional tasks in an element, however, for those tasks

that are not implemented it is important that the element routine not perform any

calculations. Thus if the form of the branch is programmed as an IF-THEN-ELSE

construct as shown in Fig. 5.1 then the ELSE should not carry out any operations

unless all options for ISW are programmed. Similarly if the element is programmed

using a SELECT-CASE form shown in Figure 5.2 the CASE DEFAULT should not perform

any operations.

Parameter Description
d(*) Element data parameters

(Moduli, body loads, etc.)
ul(ndf,nen,j) Element nodal solution parameters

nen is number of nodes on an element (max)

j = 1: Displacement u
(k)
n+a

j = 2: Increment u
(k)
n+a − un

j = 3: Increment u
(k)
n+1 − u

(k−1)
n+1

j = 4: Rate v
(k)
n+a

j = 5: Rate a
(k)
n+a

j = 6: Rate vn
xl(ndm,nen) Element nodal reference coordinates
ix(nen) Element global node numbers
tl(nen) Element nodal temperature values
s(nst,nst) Element matrix (e.g., stiffness, mass)
r(ndf,nen) Element vector (e.g., residual, mass)

may also be used as r(nst)
ndf Number unknowns (max) per node
ndm Space dimension of mesh
nst Size of element arrays S and R

N.B. Normally nst = ndf*nen
isw Task parameter to control computation

See prototype element in Figure 5.1

Table 5.1: Arguments of FEAP Element Subprogram.

CHAPTER 5. ADDING ELEMENTS 49

isw Type Description Access Calling
Task Command Program

-1 O Set name in utx(1) Called by default pcontr

0 O Output label SHOW ELEM pmacr5

1 R Input d(*) parameters Mesh:MATE,n pmatin

2 O Check elements Soln:CHECk pform

3 R Compute tangent/residual Soln:TANG pform

Store in S/r UTAN pform

4 O Output element variables Soln:STRE pform

5 E Compute cons/lump mass Soln:MASS pform, formrb
Store in S/r MASS,LUMP pform

6 R Compute residual Soln:FORM,REAC pform

Plot:REAC pform

7 O Surface load/tangents Mesh:SLOAd ploadl

8 O Nodal projections Soln:STRE NODE pform

Plot:STRE,PSTR pform

9 O Damping Soln:DAMP pform

10 O Augmented Lagrangian update Soln:AUGM pform

11 O Error estimator Soln:ERRO pform

12 R History update. For special
treatments else return

Soln:TIME pform

13 O Energy/momentum Soln:TPLO,ENER pform

14 R Initialize history BATCh,INTEr pform

15 O Body force Mesh:BODY pform

16 O J integrals Soln: JINT pform

17 O Set after activation Soln:ACTI pform

18 O Set after deactivation Soln:DEAC pform

19 NOT AVAILABLE: used in
modal/base. Uses isw = 5

Soln:BASE pform

20 O Element plotting Plot:PELE pform

21 O Critical time step calculation Soln:TIME EXPL pform

22 O stress/strain volume average Soln:STRE AVER pform

23 O Compute element loads only Soln:ARCL pform

25 O Zienkiewicz-Zhu projection Soln:ZZHU pform

26 R Used to compute mesh boundary Called by default. pextndc

Table 5.2: Task Options for FEAP Element Subprogram. R = Required; O = Optional;
E = For eigensolutions

N.B. Finally, the old form

CHAPTER 5. ADDING ELEMENTS 50

select case (isw)
case(-1)

utx(1) = ’Name_U_Want’
case(1)

! Input material parameters
...
pstyp = <0,1,2,3> ! Dimension of mesh plot
istv = max(istv,*> ! * = max no. element projections

case default
...

end select

Figure 5.2: FEAP Element Subprogram. Case form.

go to (1,2,.....), isw

return

! Input Material Properties

1 etc.

is not recommended, however, if it is used the RETURN statement should always be

included as shown. This prevents any unexpected execution of a statement that appears

after the GO TO.

Some of the options for additional data passed through common blocks is shown in

Figure 5.3 with each variable defined in Table 5.3. Also, in Figure 5.4 the reference

to common blocks using include statements is shown. In the prototype routine the

number of nodes on an element (nen) which is used to dimension ul is passed in the

labeled common /cdata/. Additional discussion is given below on use of some of the

other data passed through the common blocks.

5.1 Material property storage

The material parameters to be stored in the array D with pointer np(25) may be input

using the subprogram INMATE. This subroutine is accessed by the statement:

call inmate(d,tdof, nev, type)

where d is the array storing the material parameters; tdof is returned as the parameter

to access temperature; nev is the number of element history variables to allocate to

nh1; and type is an input to define the element type (the various type of elements

allowed is specified in the module inmate.f)..

CHAPTER 5. ADDING ELEMENTS 51

character (len=4) :: o,head
common /bdata/ o,head(20)

integer :: numnp,numel,nummat,nen,neq,ipr, netyp, cnel
common /cdata/ numnp,numel,nummat,nen,neq,ipr, netyp, cnel

integer :: nstep,niter,nform,naugm, titer,taugm,tform
common /counts/ nstep,niter,nform,naugm, titer,taugm,tform

integer :: iaugm,iform,intvc,iautl, nstepa, nsplt
common /counts/ iaugm,iform,intvc,iautl, nstepa, nsplt

character (len=17) :: ecapt , dcapt
common /elcapt/ ecapt(50), dcapt(50)

real (kind=8) ::dm
integer :: n_el,ma,mct,iel,nel,pstyp,eltyp,eltyp2,eltyp3
common /eldata/ dm,n_el,ma,mct,iel,nel,pstyp,eltyp,eltyp2,eltyp3

real (kind=8) ::tt
common /elplot/ tt(1000)

real (kind=8) ::bpr, ctan, psil
common /eltran/ bpr(3),ctan(3),psil

real (kind=8) ::ut
common /eluser/ ut(1000)

integer :: nh1,nh2,nh3,ht1,ht2,ht3 ! int*4 or int*8
common /hdata/ nh1,nh2,nh3,ht1,ht2,ht3

integer :: nlm,plm,nge,pge ! int*4 or int*8
common /hdata/ nlm,plm,nge,pge

Figure 5.3: Partial list of FEAP element common blocks. (N.B. All variables may not
be included above.): Part 1

This routine inputs the commands as described in the user manual and stores the

data for each material set into the D array elements as described in Table 5.5. Users

should always verify that table list is correct by checks to module inmate located in

the ./elements/material directory.

5.2 Element matrix dimensions

Each element has the capability to form two arrays: a matrix, S, and a vector, R. For

example, when isw = 3 the matrix stores the problem tangent array and the vector

CHAPTER 5. ADDING ELEMENTS 52

integer :: ior,iow,ilg
common /iofile/ ior,iow,ilg

logical :: keepfl,wprt
common /iofile/ keepfl,wprt

integer :: nph,ner ! int*4 or int*8
real (kind=8):: erav,jshft
common /prstrs/ nph,ner,erav,jshft

integer :: ndf,ndm,nen1,nst,nneq,ndl,nnlm,nadd
common /sdata/ ndf,ndm,nen1,nst,nneq,ndl,nnlm,nadd

real (kind=8):: ttim,dt,c1,c2,c3,c4,c5, chi, dtcr
integer :: idyn0
common /tdata/ ttim,dt,c1,c2,c3,c4,c5, chi, dtcr, idyn0

integer (kind=8) :: np ,up
common /pointer/ np(400),up(200)

real (kind=8):: hr
integer :: mr
common /comblk/ hr(1024),mr(1024)

Figure 5.3: Partial list of FEAP element common blocks: Part 2

the problem residual array. When isw = 5 the matrix stores the consistent mass

array and the vector a lumped mass array.

In FEAP the element tangent matrix, Sij, is stored as a two dimensional array which

is dimensioned as s(nst,nst), where nst is the product of ndf and nen plus any

element and global equations, with ndf the maximum number of degree-of-freedoms

include ’bdata.h’
include ’cdata.h’
include ’counts.h’
include ’eldata.h’
include ’elplot.h’
include ’eltran.h’
include ’hdata.h’
include ’iofile.h’
include ’prstrs.h’
include ’tdata.h’
include ’pointer.h’
include ’comblk.h’

Figure 5.4: FEAP Element Common Blocks using Includes.

CHAPTER 5. ADDING ELEMENTS 53

Common Name Variable Definition
bdata o Page eject option

head Title record
cdata numnp Number of mesh nodes

numel Number of mesh elements
nummat Number of material sets
nen Maximum nodes/element
neq Number active equations
ipr Real variable precision

counts nstep Total number of time steps
niter Number of iterations current step
naugm Number of augments current step
titer Total iterations
taubm Total augments
iaugm Augmenting counter
iform Number residuals in line search

elcapt dm Nodal & element plot captions
dcapt Nodal contour plot captions
ecapt Element contour plot captions

eldata dm Element proportional load
n el Current element number
ma Current element material set
mct Print counter
iel User element number
nel Number nodes on current element

elplot tt Element stress values for TPLOt
eltran bpr Principal stretch

ctan Element multipliers
eluser ut Element user values for TPLOt

Table 5.3: FEAP common block partial list of definitions.

at any node in the problem and nen the maximum number of nodes on any element.

The ordering of the unknowns into the first ndf*nen entries of nst must be carefully

aligned in order for FEAP to properly assemble each element matrix into the global

tangent. Element equations follow these and then finally any global equations (See

Fig. 5.5). The ordering of the first row and column blocks is such that sub-matrices

CHAPTER 5. ADDING ELEMENTS 54

Common Name Variable Definition
hdata nh1 Pointer to tn history data

nh2 Pointer to tn+1 history data
nh3 Pointer to element history
nlm Number of element equations
plm Partition of element equations
nge Number of global equations
pge Partition of global equations

iofile ior Current input logical unit
iow Current output logical unit

prstrs nph Pointer to global projection arrays
ner Pointer to global error indicator
erav Element error value

sdata ndf Maximum dof/node
ndm Mesh space dimension
nen1 Dimension 1 on IX array
nst Size of element matrix
nneq Total dof in problem

tdata ttim Current time
dt Current time increment
ci Integration parameters

comblk hr Real array data
mr Integer array data

Table 5.4: FEAP common block partial list of definitions.

are defined for each node attached to the element. Thus

S =

S11 S12 S13 ··
S21 S22 S23 ··
S31 S32 S33 ··
·· ·· ·· ··

where Sij is the sub-matrix for nodal pairs i, j. Each of the sub-matrices is a square

matrix of the size of the maximum number of degree-of-freedoms in the problem which

is passed to the subprogram as ndf. Thus,

Sij =

Sij11 Sij12 Sij13 ··
Sij21 Sij22 Sij23 ··
Sij31 Sij32 Sij33 ··
·· ·· ·· Sijndf,ndf

in which Sijab is an array coefficient for nodal pair i, j for the degree-of-freedom pair a, b.

CHAPTER 5. ADDING ELEMENTS 55

Parameter Name Description
1 E Young’s modulus
2 ν Poisson ratio
3 α Thermal expansion coefficient
4 ρ Mass density
5 - Quadrature order for arrays & output
7 a Mass interpolation (a = 0: Diagonal; a = 1: Consistent
8 rhoi Rotational mass factor (plates/shells)
9 T0 Stress free reference temperature

10 q Loading intensity (plates/shells)
11 b1 Body force/volume in 1-directions
12 b2 Body force/volume in 2-directions
13 b3 Body force/volume in 3-directions
14 h Thickness (plates/shells)
15 nh1 History variable counter
16 stype Two dimensional type: 1 - plane stress; 2 - plane strain;

3 - axisymmetric; 8 - axisymmetric-torsion;
9 - spherical2

17 etype Element formulation: 1 - displ; 2 - mixed; 3 - enhanced;
7 - Uniform defm.; 8 - stabilized; 9 - incompressible.

18 dtype Deformation type: <: finite; small >
19 tdof Thermal degree-of-freedom
20 imat Non-linear elastic material type
21 d11, a1 Material elastic moduli, Fung parameter
22 d22, a2 Material elastic moduli, Fung parameter
23 d33, a3 Material elastic moduli, Fung parameter
24 d12, a4 Material elastic moduli, Fung parameter
25 d23, a5 Material elastic moduli, Fung parameter
26 d31, a6 Material elastic moduli, Fung parameter
27 g12, a7 Material elastic moduli, Fung parameter
28 g23, a8 Material elastic moduli, Fung parameter
29 g31, a9 Material elastic moduli, Fung parameter
30 C Fung pseudo elastic model modulus

Table 5.5: Material Parameters.

CHAPTER 5. ADDING ELEMENTS 56

Parameter Name Description
31 ψ Orthotropic angle x1 principal axis 1
32 A Area cross section (beam/truss)
33 I11 Inertia cross section (beam/truss)
34 I22 Inertia cross section (beam/truss)
35 I12 Inertia cross section (beam/truss)
36 J Polar inertia cross section (beam/truss)
37 κ1 Shear factor (plates/shells/beams)
38 κ2 Shear factor plate
39 - Non-linear flag (beam/truss)
40 - Inelastic material model type
41 Y0 Initial yield stress (Mises)
42 Y∞ Final yield stress (Mises)
43 β Exponential hardening rate
44 Hiso Isotropic hardening modulus (linear)
45 Hkin Kinematic hardening modulus (linear)
46 - Yield flag
47 β1 Orthotropic thermal stress
48 β2 Orthotropic thermal stress
49 β3 Orthotropic thermal stress
50 - Error estimator parameter
51 ν1 Viscoelastic shear parameter
52 τ1 Viscoelastic relaxation time
53 ν2 Viscoelastic shear parameter
54 τ2 Viscoelastic relaxation time
55 ν3 Viscoelastic shear parameter
56 τ3 Viscoelastic relaxation time
57 nvis Number of viscoelastic terms (1-3)
58 - Damage limit
59 - Damage rate
60 k Penalty parameter

Table 5.5: (Cont.) Material Parameters.

CHAPTER 5. ADDING ELEMENTS 57

Parameter Name Description
61 K1 Fourier thermal conductivity
62 K2 Fourier thermal conductivity
63 K3 Fourier thermal conductivity
64 c Fourier specific heat
65 ω Angular velocity
66 Q Body heat
67 - Heat constitution added indicator
68 - Follower loading indicator
69 - Frame distributed load (framf3e.f only)
70 - Damping factor
71 g1 Ground acceleration factor
72 g2 Ground acceleration factor
73 g3 Ground acceleration factor
74 p1 Ground acceleration proportional load number
75 p2 Ground acceleration proportional load number
76 p3 Ground acceleration proportional load number
77 a0 Rayleigh damping mass ratio
78 a1 Rayleigh damping stiffness ratio
79 - Plate/Shell/Rod shear activation flag
80 Method: Type 1
81 Method: Type 2
82 - Truss/Rod quadrature number
83 - Axial loading value
84 - Constitutive start indicator
85 - Polar angle indicator
86 - Polar angle coord 1
87 - Polar angle coord 2
88 - Polar angle coord 3
89 - Constitution transient type
90 d31 Plane stress recovery
91 d32 Plane stress recovery
92 α3 Plane stress recovery

Table 5.5: (Cont.) Material Parameters.

CHAPTER 5. ADDING ELEMENTS 58

Parameter Name Description
93 sref Shear center type
94 y1 Shear center coordinate
95 y2 Shear center coordinate
96 lref Reference vector type
97 n1 Reference vector parameter
98 n2 Reference vector parameter
99 n3 Reference vector parameter

100 - Cross section shape type: 1 = rectangles; 2 = tube;
3 = Wide flange; 4 = Channel; 5 = Angle; 5 = Circle

101-126 - Shape data
127 - Surface convection (h)
128 - Free-stream temperature (T∞)
129 - Reference absolute temperature
130 nseg Number of hardening segments

131-148 - Segment data sets ep, Yiso, Hkin

149 - Total variables on frame section
150 - Plastic kinematic hardening

151-156 - Hardening: h1, h2, h3, h4, h5, j1

157 F̄ Traction RVE constraints.
158 Q̄ Thermal flux RVE constraints.
159 ngm Number of RVE constraints
160 - Initial stress flag

161-166 σij Initial stresses (constant)
167 - Tension/compression only indicator
168 - Thermal activation indicator
169 - Mechanical activation indicator
170 - Volume model number (default 1)
171 - Plot projections on/off
172 nvpr Number viscoelastic pressure terms (1-3)
173 µ1 Viscoelastic volume/pressure parameter
174 τ1 Viscoelastic relaxation time
175 µ2 Viscoelastic volume/pressure parameter
176 τ2 Viscoelastic relaxation time
177 µ3 Viscoelastic volume/pressure parameter
178 τ3 Viscoelastic relaxation time
179 - Unused

180-181 - Viscoplastic rate parameters
182 - Nodal quadrature parameters
183 βm ML −MC mass scaling factor
184 c Estimate on maximum wave speed

Table 5.5: (Cont.) Material Parameters.

CHAPTER 5. ADDING ELEMENTS 59

Parameter Name Description
185 - Augmentation switch: <on/off>
186 - Augmentation explicit indicator
187 Implicit = 0; Explicit = 1 element integration
188 - Number stress components in rod elements
189 - Nurbs & VEM flag

190-192 - Nurbs quadrature values/direction
193 tmat Thermal material numbers
194 ietype Element type
195 T − frac Fraction of work to heat
196 q − prop Proportional load factor for pressure loading

197-198 - Body patch loading values
199 - Axisymmetric 1-d: Plane stress in thickness
200 nsiz Size of modulus or compliance array

201-236 - Anisotropic Modulus or Compliance array
237 - Number of element global equations (nge
238 - Partition of element global equations
239 - Unused
240 - 0 = Element based; 1 = nodal based formulation
241 - Number of active element degrees of freedom

242-248 V1,V2 Plastic Vector orientation
249-255 - Reference vector types and values
260-279 nstv Number structure vectors/values
280-282 gi Thermal-elastic temperature function

283 - Unused
284-286 - Delete element data

287 - Total energy computation switch
288 - Shell thickness change flag
289 - Rate switch (on=0,off=1)

290-293 - Constitutive equation coordinate frame
294 - Rotatory inertia on/off flag

295-296 - Body force user parameters
297 - RVE type: 1 = Hill-Mandel; 2 = Irving-Kirkwood

Table 5.5: (Cont.) Material Parameters.

CHAPTER 5. ADDING ELEMENTS 60

Figure 5.5: Tangent matrix and residual including element and global constraints.

In FEAP, the element residual may be stored as a one dimensional array which is

dimensioned r(nst) with entries stored in the same order as the rows of the element

tangent matrix or as a two dimensional array which is dimensioned as r(ndf,nen).

The one dimensional form of the residual is given as

R =

R1

R2

R3
...

where the entries in each submatrix are given as

Ri =

Ri

1

Ri
2

...
Ri
ndf

 .

The two dimensional form r(ndf,nen) places the entries Ri as columns. Accordingly,

R =
[
R1 R2 R3 · · ·

]
.

The two forms for defining the residual r are equivalent based on the Fortran ordering

of information into double subscript arrays.

If ndf is larger than needed for the element and residual the unused positions need not

be defined (the tangent array s and the residual r are set to zero before each element

routine is called).

CHAPTER 5. ADDING ELEMENTS 61

The arrays xl(i,j), ul(i,j,1), ul(i,j,4) and ul(i,j,5) (described in Table 5.1)

are used to obtain the nodal coordinates, displacements, velocities and accelerations,

respectively.

When programming an element it is the users responsibility to decide the meaning

for each degree-of-freedom. In all the standard elements provided with FEAP the

degree-of-freedoms for displacements are assigned to the first ndm positions (where ndm

is the spatial dimension of the mesh). In thermo-mechanical problems the thermal

degree-of-freedom is normally located at NDM+1. The actual location of element degree-

of-freedoms to the global degree-of-freedoms can be set in the input file by the data

statements

MATErial ma

etype uel eset g_1 g_2 ... g_ndf

When etype = user the parameter uel defines the user element number. The eset

parameter defines the values set for each element (by default it is ma). Finally the

g i values define the global degree-of-freedom for the ”i” local degree-of-freedom. By

default g i = i. Thus, if the programmer is coding ELMT02 and has placed the values

for a scalar degree-of-freedom in the first degree-of-freedom in S and R it may be moved

to global degree-of-freedom 4 using the input statements

MATErial ma

USER 2 ,, 4

...

To assemble the element stiffness matrix it is often useful to define an integer indexing

array, sa(nen) which may be set in Fortran using the statements3:

sa(1) = 0

do i = 2,nel

sa(i) = sa(i-1) + ndf

end do ! i

The entries in the first nd degree-of-freedoms in the element matrix and vector may

then be assembled using the statements

3If the include qudshp.h is used in the element the array is automatically defined and available.

CHAPTER 5. ADDING ELEMENTS 62

do j = 1,nel ! Column node loop

do a = 1,nd ! DOF loop

! 1-d r-array form

r(sa(j)+a) = r(sa(j)+a) + ...

! 2-d r-array form

r(a,j) = r(a,j) + ...

end do ! a

do i = 1,nel ! Row node loop

do b = 1,nd ! DOF loops

do a = 1,nd

s(sa(i)+a,sa(j)+b) = s(sa(i)+a,sa(j)+b) + ...

...

This form ensures that the submatrices are properly aligned in the s-array and r-array.

5.3 Elements with internal equations

In some formulations it is convenient to use non-nodal degrees of freedom that are

independent of a node. These may be of the Lagrange multiplier type or simply any

other variable. To activate these element variables the include

include ’hdata.h’

must be available and the statement

nlm = var1

defined in the sections where isw=1 occurs. The value of var1 defines the number of

element variables. If the equations are only active in one partition then the statement

plm = var2

is also given where var2 defines the partition for element variables. If plm is zero the

element equations are active in all partitions. The equations associated with these

equations is located at the rows and columns greater than nen*ndf in the residual and

tangent matrices. That is in rows and columns nen*ndf+1 to nen*ndf+var1. See Sect.

5.5.1 for further details on setting element equations.

CHAPTER 5. ADDING ELEMENTS 63

5.4 Non-linear Transient Solution Forms

Before describing the steps in developing an element we summarize first the basic

structure of the algorithms employed by FEAP to solve problems. Each problem to

be solved using an ELMTnn routine is established in a standard finite element form

as described in standard references (e.g., The Finite Element Method, 4th ed., by

O.C. Zienkiewicz and R.L. Taylor, McGraw-Hill, London, 1989 (vol 1), 1991 (vol 2)).

Here it is assumed this step leads to a set of non-linear ordinary differential equations

expressed in terms of nodal displacements, velocities, and accelerations given by ui(t),

u̇i(t), and üi(t), respectively. We denote the differential equation for node-i as the

residual equation:

Ri(ui(t), u̇i(t), üi(t), t) = 0 .

To solve for the nodal displacements,velocities and accelerations it is necessary to

introduce an algorithm to integrate the nodal quantities in time, specify a constitutive

relation, and develop an algorithm to solve a (possibly) non-linear problem.

In FEAP, the integration method for nodal quantities is taken as a one step algorithm

with each quantity defined only at discrete times tn. Accordingly, we have displace-

ments ui(tn) with velocities and accelerations denoted as

u̇i(tn) ≈ vi(tn)

and

üi(tn) ≈ ai(tn)

A typical example for an integration algorithm for these discrete quantities is New-

mark’s method where

ui(tn+1) = ui(tn) + ∆tvi(tn) + ∆t2 [(
1

2
− β) ai(tn) + β ai(tn+1)]

and

vi(tn+1) = vi(tn) + ∆t [(1 − γ) ai(tn) + γ ai(tn+1)]

with u, v, and a being the set of displacements, velocities, and accelerations at node-i,

respectively.

A Newton method is commonly adopted to solve a non-linear (or linear) problem. To

implement a Newton method it is necessary to linearize the residual equation. For

FEAP, the Newton equation may be written as

R
(k+1)
i = R

(k)
i +

∂Ri

∂αj
|(k) dα

(k)
j = 0

CHAPTER 5. ADDING ELEMENTS 64

where αj is one of the variables at time tn+1 (e.g., uj(tn+1)). We define

S
(k)
ij = − ∂Ri

∂αj
|(k)

and solve

S
(k)
ij dα

(k)
j = R

(k)
i .

The solution is updated using

α
(k+1)
j = α

(k)
j + dα

(k)
j .

In the above (k) is the iteration number for the Newton algorithm. To start the solution

for each step, FEAP sets

α
(0)
j (tn+1) = αj(tn)

where a quantity without the (k) superscript represents a converged value. For a linear

problem, Newton’s method converges in one iteration. Computing the residual after

one iteration must yield a zero value to within the roundoff of the computer used.

For non-linear problems, a properly implemented Newton’s method must exhibit a

quadratic asymptotic rate of convergence. Failure of the above performance for linear

and non-linear cases implies a programming error in an implementation or lack of a

consistently linearized algorithm (i.e., Sij is not an exact derivative of the residual).

In a non-linear problem, Newmark’s method may be parameterized in terms of in-

crements of displacement, velocity, or acceleration. From the Newmark formulas, the

relations

dui = β∆t2 dai

and

dvi = γ∆t dai

define the relationships between the increments. Note that only scalar multipliers

involving β, γ, and ∆t are involved between the different measures.

The tangent matrix for the transient problem using Newmark’s method may be ex-

pressed in terms of the incremental displacement, velocity, or acceleration. As an

example, consider the case where the solution is parameterized in terms of increments

of the displacements (i.e., αj is the displacement vector uj). For this case, the tangent

matrix is (we do not show dependence on the iteration (k) for simplicity of notation)

Sij duj = −∂Ri

∂uj
duj −

∂Ri

∂vk

∂vk
∂uj

duj −
∂Ri

∂ak

∂ak
∂uj

duj .

CHAPTER 5. ADDING ELEMENTS 65

Note that from the Newmark formulas

∂ak
∂uj

=
1

β∆t2
δkj ;

∂vk
∂uj

=
∂vk
∂al

∂al
∂uj

=
γ

β∆t
δkj

in which δkj is the Kronnecker delta identity matrix for the k,j nodal pair . From the

residual we observe that

Kij = − ∂Ri

∂uj
; Cij = − ∂Ri

∂vj
; Mij = − ∂Ri

∂aj

define the tangent stiffness, damping, and mass, respectively. Thus, for the Newmark

algorithm the total tangent matrix in terms of the incremental displacements is

Sij = Kij +
γ

β∆t
Cij +

1

β∆t2
Mij .

For other choices of increments, the tangent may be written in the general form

Sij = c1 Kij + c2 Cij + c3 Mij

where the ci are scalar quantities involving the integration parameters of the method

selected and ∆t. Thus, any one step integrator may be considered and will affect only

the specification of the constants in the tangent. When FEAP solves a problem without

transient loading (e.g., inertial loading as mass times acceleration) the velocities and

accelerations are set to zero prior to calling the element subroutine. Consequently,

in programming the steps to compute the residual r the inertia terms have no effect

for static or quasi-static problems and may be included (generally there are very few

additional operations involved to add these terms). The programming of the tangent

array, however, must distinguish between cases in which transient (e.g., inertial) loads

are present and those in which they are omitted. The different cases are implemented

in FEAP by making appropriate assignments to the ci parameters. To facilitate the

programming of the tangent array returned in s for the various cases, a parameter

array ctan(3) is passed to the subprogram in labeled common eltran. When the task

parameter isw is 3, the values in the ctan array are interpreted according to Table 5.6.

Thus, in solid mechanics applications the tangent matrix is defined in an element

routine as

S = ctan(1) K + ctan(2) C + ctan(3) M

where K is the stiffness matrix, C is the damping matrix, and M is the mass matrix.

For non-linear applications these matrices normally are computed with respect to the

current values of the available solution parameters. The values provided in the ctan

array are set by FEAP according to the active transient solution option. For a static

CHAPTER 5. ADDING ELEMENTS 66

Parameter Description
ctan(1) c1: Multiplier of s matrix for ul(i,j,1) terms

(e.g., stiffness matrix multiplier)
ctan(2) c2: Multiplier of s matrix for ul(i,j,4) terms

(e.g., damping matrix multiplier)
ctan(3) c3: Multiplier of s matrix for ul(i,j,5) terms

(e.g., mass matrix multiplier)

Table 5.6: Tangent Parameters

option both ctan(2) and ctan(3) are zero. For options integrating first order differen-

tial equations in time only ctan(3) will be zero. For options integrating second order

differential equations in time all the parameters are non-zero.

In Appendix A an example of the stiffness matrix and residual for a 2-node truss user

element in FEAP is presented in detail.

5.5 Setting Options in Elements

FEAP requires setting of some parameters and provides also setting of additional

options within element tasks.

5.5.1 Task 1 Options

Setting active nodal equations

Often it is necessary to use several element types to perform an analysis. For example it

may be necessary to use both truss and frame (bending resistant) elements to perform

an analysis. As developed in Appendix A, the truss element has one degree-of-freedom

for each spatial dimension, whereas, the frame element must have additional unknowns

to represent the bending behavior. For nodes connected only to truss elements it is

not necessary to have the additional degrees-of-freedoms active and a user would be

required to specify restraint conditions for these nodes and degrees-of-freedom. By

inserting the following lines of code into the truss element routine for the isw = 1 task

FEAP will automatically eliminate the degrees-of-freedom with values greater than

ndm (the spatial dimension of the mesh).

do i = ndm+1,ndf

CHAPTER 5. ADDING ELEMENTS 67

ix(i) = 0
end do ! i

This avoids the need to specify appropriate fixed boundary conditions for the unused

values.

Instead, if one wishes to set the active degrees-of-freedom at each individual node of

an element it is necessary to dimension the array as ix(ndf,*). In this form the first

column corresponds to the global pattern described above and columns 2 to nen+1 are

associated with the local element nodes 1 to nen. The element degrees-of-freedom are

then assigned to each node individually by assigning a 1 for an active degree-of-freedom

or 0 for an inactive one. Note when using this option: Do not make changes to the first

column of the ix array.

Example: 3-node element with 3-dof/node

Consider a problem with three degrees-of-freedom and three nodes on each element. It

is desired to have degrees-of-freedom 1 and 3 active on node 2 and degree-of-freedom

2 active on nodes 1 and 3. This is accomplished by setting the ix array values as:

ix(1,2) = 0 ! For node 1
ix(2,2) = 1
ix(3,2) = 0

ix(1,3) = 1 ! For node 2
ix(2,3) = 0
ix(3,3) = 1

ix(1,4) = 0 ! For node 3
ix(2,4) = 1
ix(3,4) = 0.

Note that for isw = 1 the ix parameter is not used to pass the nodal connection array

but is used to return the list of unused degrees-of-freedom.

Setting element plot sequence

Utility routines are also provided to provide the necessary list of nodes needed to

properly draw the mesh for each element type during plot outputs. The names of the

routines available are listed in Table 5.7. Generally, FEAP can figure out which routine

to call if the parameter pstyp is set to the spatial dimension of the plot. Thus for line

plots one includes the statement

CHAPTER 5. ADDING ELEMENTS 68

Routine Name Description
PLTLN2 2-node line element
PLTLN3 3-node line element
PLTRI3 3-node triangular element
PLTRI6 6-node triangular element
PLTR10 10-node triangular element
PLQUD4 4-node quadrilateral element
PLQUD8 8 or 9-node quadrilateral element
PLTQ16 16-node quadrilateral element
PLTET4 4-node tetrahedron element
PLTET10 4-node tetrahedron element
PLBRK8 8-node brick element
PLBK27 27-node brick element
PLBKPQR 64-node brick element

Table 5.7: Element Plot Definition Subprograms

pstyp = 1 ! 1-d line plots

selection of the correct plot is then determined by the number of nodes on the elements.

Similarly for surface plots one includes

pstyp = 2 ! 2-d surface plots

and for solid elements the statement

pstyp = 3 ! 3-d solid plots

If no plotting is wanted for the element the parameter is set as

pstyp = 0 ! No plots

Setting plot captions

The plot captions for contour plots may be set by the user adding the include file

include ’elcapt.h’ ! ecapt(50), dcapt(50)

CHAPTER 5. ADDING ELEMENTS 69

which contains two arrays: ecapt(50) and dcapt(50) which replace the default cap-

tions for element variables (PLOT STREss) and nodal variables (PLOT CONT), respec-

tively. For example, the caption for nodal degree of freedom 3 may be reset in the

element isw=1 part using the statement:

dcapt(3) = ’ PRESSURE ’ ! up to 17 characters

Similarly, the caption for stress variable 1 may be changed to a force type using the

caption

ecapt(1) = ’ Axial Force: N ’ ! up to 17 characters

Alternatively, the ecapt(*) may be defined in the isw.eq.8 part of the element.

Setting maximum number of element projections

By default the number of element items that may be projected to nodes is limited to

eight (8). This may be increased by add the include file

include ’strnum.h’

and setting the variable istv to the number desired. This should be set as follows:

istv = max(istv,<number element projections>)

to avoid loss from other element projections.

N.B. Be sure to also set iste in the plot projection module (See Task 8 Options).

Setting number of element equations

In some problems individual elements have solution parameters that are not associated

with a node. Also, in some cases the parameters are associated with a Lagrange

multiplier constraint which implies the global equations have initial zero diagonals. To

facilitate these constraints when using the standard profile solver the equations are

placed after all the equations of all nodal parameters on each element.

During input of material parameters the number of element parameters associated with

each material set may be assigned to the parameter nlm which may be included using

the statement

CHAPTER 5. ADDING ELEMENTS 70

include ’hdata.h’ ! nlm,plm

If partitions are used during problem solution the appropriate partition for the multi-

pliers may be assigned to the parameter plm which is in the same include file.

1. Hint: The value of nlm should also be saved in one of the material parameters of

the d(n) array and retrieved for other isw values using:

nlm = nint(d(n))

where ‘n’ is the location saved.

The solution for parameter ’i’ in each element is returned in the local array ule(i,1).

The value at the previous time step is in ule(i,2), and the last solution increment in

ule(i,3). These are returned to the element using

include ’lmdata.h’ ! ule(100,3)

This is identical to the way nodal variables are ordered. If the parameters have inertial

effects a user needs to perform these and manage using additional history variables.

Setting number of global equations

An element module may also set the number of global equations (see Sect. 5.11) during

input of the material parameters. this is accomplished by setting the desired value in

the parameter nge and add the include file

include ’hdata.h’ ! nge,pge

If partitions are used in the problem solution the one to be used may be set in the

parameter pge which is in the same include file.

The values of global equations are passed back to an element during problem solution

in the array ulg(*) which is accessed using the include

include ’lmdata.h’ ! ulg(100)

CHAPTER 5. ADDING ELEMENTS 71

Routine Name Description
CKTRIS 2-d 3, 6, 7 or 10 node triangle
CKISOP 2-d 4, 8, 9 or 16 node quadrilateral
CKTETS 3-d 4 or 10 node tetrahedron
CKPYR5 3-d 5 node pyramid
CKWED6 3-d 6 node wedge
CKBRK8 3-d 8, 27 or 64 node hexahedron

Table 5.8: Element Checking Subprograms

5.5.2 Task 2 Options

Mesh checking is performed using the solution command

CHECk

and is used to ensure, where possible, that the element connection array IX is correctly

numbered and that the element area or volume is positive. Table 5.8 lists the basic

routines that are available for use in checking 2 or 3-d solid elements. In some instances

these routines will make changes to the ordering of nodes in the IX array to give proper

ordering. It is recommended that after correction a new input file be created using

OUTM

It may be necessary to edit this file to add any missing parts.

The routines for 2-d checking are accessed form an ELMTnn module using the call

call <cktris,ckisop>(ix,xl,shp2(1,1),ndm)

and for 3-d by

call <cktets,ckbrks>(n_el,ix,xl,ndm,nel, shp3)

call <ckpyr5,ckwed6>(n_el,ix,xl,ndm, shp3)

The parameters require using include files

include ’qudshp.h’ ! shp2, shp3

include ’eldata.h’ ! n_el, nel

while the remainder are arguments of the ELMTnn module.

CHAPTER 5. ADDING ELEMENTS 72

5.5.3 Task 3 Options

The basic structure of the element module for transient calculations also permits the

calculation of eigenpairs when shifts are needed. That is when the command

TANG EIGE ,, s

is used the problem

[K− sM] Φ = M Φ Λ

is needed. This is accomplished by setting ctan(3) = - s * ctan(1) and ctan(2)

= 0 and forming the element tangent as

S(:, :) = K(:, :) ∗ ctan(1) +M(:, :) ∗ ctan(3)

which is the required form for the transient solution (without damping) also.

5.5.4 Task 6 Options

The TPLOt solution command includes an option to save specific element quantities

(e.g., stress,strain, etc.). This option is implemented for user elements by including the

common

real (kind=8) :: tt
common /elplot/ tt(1000)

which is best set using

include ’elplot.h’

and then inserting the statement

tt(i) = value

at an appropriate location in the isw = 3 task.

For example if it were desired to save the force and strain in the truss element the

statements

CHAPTER 5. ADDING ELEMENTS 73

tt(1) = EA*eps ! Element axial force
tt(2) = eps ! Element axial strain

could be placed anywhere after the stress and strain are defined. These values would

be output by using a solution command sequence such as

batch
tplot

end
stress,nn,1 ! saves force for element nn
stress,nn,2 ! saves strain for element nn
show ! writes tplot items to output file

Task 8 Options

The computation of element variables projected to nodes is carried out under isw =

8. This is described in the next section for a simple example. It is important when

completing the projection module to inform FEAP how many parameters are being

projected. This is accomplished in conjunction to the setting of istv in the isw = 1

part by including

include ’setnum.h’

and then assigning the parameter iste the number of projected items [see Fig. 5.6].

5.6 Projection of element variables to nodes

The STREss NODE n solution command and the PLOT STREss n command require a

projection of element variables to nodes.

For the solid elements these commands consider the parameter “n=1,2,...,6” to be

the stresses in the order

σ11, σ22, σ33, σ12, σ23, σ31,

and the strains in the same order to be in n=7,8,...,12. Alternatively, the strains may

be obtained using the commands STRAin NODE n or PLOT STRAin n with n=1,2,...,6.

The stresses are also used to compute principal values which are output with the STREss

NODE command and may be plotted using the command PLOT PSTRess n where the

CHAPTER 5. ADDING ELEMENTS 74

values are σn for n=1,2,3 and are the invariants I1, J2, J3 for n=5,6,7. The plotted

value for n = 4 depends on the spatial dimension of the problem.

For other elements the values projected differ and programmers should consult the user

manual or the source code of each element.

A continuous stress field is assumed to obtain the nodal values. Accordingly, each

component is expressed as

σi = Nα σ̃α

where σi is any value which is to be projected to nodes (e.g., a stress or strain), Nα are

shape functions for the element type considered, and σα nodal values of the projected

quantity.

Solid and thermal elements use a local least squares method to project stress, strain,

and temperatues as described in the paper by Govindjee et al.[13] or in the mono-

graph chapter by Mitchell et al.[14]. In this approach one first does a full least squares

projection on each element individually using

M e
αβσ̃

e
β =

∫
Ω

NαNβ dΩ =

∫
Ω

Nα σ̂i dΩ

and then averages the element nodal values as

σ̃β =
1

E

E∑
e=1

σ̃eβ

where E is the number of elements at node β. The averaging step is performed auto-

matically by FEAP.

Other elements use a diagonal weight matrix to project the values. For simple elements

the matrix is computed by a procedure identical to mass lumping. For example,

Mαα =

∫
Ω

Nα dΩ

defines a ‘row sum’ form of projection matrix[15, 16, 17, 18]. Using the above results in

the set of equations and a least square fit with the finite element values σ̂i gives the

equation set

Mαα σ̃α =

∫
Ω

Nα σ̂i dΩ .

This defines nodal values for projected quantities. Since the coefficient matrix is diag-

onal the solution to the set of equations for each component is trivial. The diagonal

equation solution may also be performed automatically by FEAP.

CHAPTER 5. ADDING ELEMENTS 75

Each of the above may be performed using the P and S element array when isw = 8.

In the local least squares approach the values are returned as

P(β) = 1 and S(β, i) = σ̃β

In the row sum algorithm the values are returned as

P(α) = Mαα and S(α, i) =

∫
Ω

Nα σ̂i dΩ

For the stress projection, the array for the projected quantities is dimensioned S(nen,*)

and not S(nst,*).

To permit each element to project its own quantities it is necessary to add the projection

operations for each element under ISW = 8.4 These are performed locally for each

element similar to all other operations. Figure 5.6 shows a simple row sum routine for

two-dimensional elements with 4-stress components begin projected. When multiple

element types are used in an analysis users must be careful to project like quantities

to common values of the S(nen,*) array so as to get correct results.

5.7 Elements with History Variables

FEAP provides options for each element to manage variables which must be saved

during the solution. These are history variables and are separated into three groups: (a)

Variables associated with the last converged solution time tn; (b) Variables associated

with the current solution time tn+1; and variables which are not associated to any

particular time. All history variables are associated with the allocation name H which

has a pointer value 49. Users are not permitted direct access to the data stored as

H (of course, it is possible to access from hr(np(49)) but this should not normally

be attempted!). Before calling the element routine for each element, FEAP transfers

the required history variable to a local storage for each type. Users may then access

the history data for each element and if necessary update values and return them

FEAP. Only for specific actions will the local history data be transferred back to the

appropriate H locations. The element history data associated with tn starts at the

memory address of the pointer for NH1 using the double precision dummy array HR in

blank common; similarly data for tn+1 starts at the memory address of the pointer for

NH2, and that not associated with a time at NH3. The three pointers are passed to each

element routine in the labeled common

4An implementation of the Zienkiewicz-Zhu projection method is implemented using ISW = 24.

CHAPTER 5. ADDING ELEMENTS 76

subroutine slcn2d(sig,shp,xsj,sg,lint,nel,nes, p,s)
!-----[--.----+----.----+----.---------------------------------------]
! Purpose: Project element variables to nodes

! Inputs:
! sig(nes,*) - Stresses at quadrature points
! shp(nel,*) - Shape functions at quadrature points
! xsj(*) - Volume element at quadrature points
! sg(3,*) - Gauss points (1,2) and weights (3)
! lint - Number of quadrature points
! nel - Number nodes on element
! nes - Dimension of stress array

! Outputs:
! p(nen) - Weights for ’lumped’ projection
! s(nen,*) - Integral of variables
!-----[--.----+----.----+----.---------------------------------------]

implicit none

include ’cdata.h’ ! Contains ’nen’
include ’strnum.h’ ! Contains ’iste’

integer :: i,l,lint,nel,nes
real (kind=8) :: xsj(*),sig(nes,*),shp(nel,*),sg(3,*)
real (kind=8) :: p(*),s(nen,*)

do l = 1,lint
do i = 1,nel

p(i) = p(i) + shp(i,l)*xsj(l)
s(i,1:4) = s(i,1:4) + sig(1:4,l)*shp(i,l)*xsj(l)

end do ! i
end do ! i
iste = 4 ! Returns number projections

end subroutine slcn2d

Figure 5.6: Element variable projection routine by row sum

integer nh1,nh2,nh3
common /hdata/ nh1,nh2,nh3

5.7.1 Assigning amount of storage for each element

The specification for the amount of history information to be associated with each

material set is controlled in the isw = 1 task of an element routine. For each material

type specified within the element routine a value for the length of the NH1 and the NH3

CHAPTER 5. ADDING ELEMENTS 77

data must be provided (the amount of NH2 data will be the same as for NH1). This is

accomplished by setting the variables nh1 and nh2 in common hdata (see above) to

the required values. That is, the statements required are:

if(isw .eq. 1) then
. . .
nh1 = 6
nh3 = 10
. . .

reserves 6 words of NH1 and NH2 data and 10 words of NH3 data for each element with

the current material number. Care should be taken to minimize the number of history

variables since, for very large problems, the memory requirements can become large,

thus reducing the size of problem that FEAP can solve.

Assigning storage for a user material

The storage for history parameters at each solution point in an element (usually a

quadrature point) is assigned to the parameters n1 and/or n3 in the umatin module.

These are then used to compute the total values for nh1 and nh3 in each element.

5.7.2 Accessing history data for each element

As noted above the data for each element is contained in arrays whose first word is

located at hr(nh1), hr(nh2) (where nh1 and nh2 are pointers) for tn, tn+1, respectively;

and at hr(nh3) for that not associated with time (note that there are values for each

only if non-zero values are assigned to nh1 and/or nh3 during the isw = 1 task. Any

other allocated data follows immediately after each first word It is a users responsibility

to manage what is retained in each variable type; however, the order of placing the tn
and tn+1 data into the NH1 and NH2 arrays should be identical. There are no provisions

to store integer history variables separately from double precision quantities. It is

necessary to cast the integer data as double precision and move to the history location.

For example, using the statement

hr(nh3+5) = dble(ivarbl)

saves the value for the integer variable ivarbl in the sixth word of the NH3 element

history array. At a subsequent iteration for this element the value of the integer would

be recovered as

CHAPTER 5. ADDING ELEMENTS 78

ivarbl = int(hr(nh3+5))

While this wastes storage for integer variables, experience indicates there is little need

to save many integer quantities and, thus, it was not deemed necessary to provide for

integer history variables separately.

Although users may define new values for any of the hr(nh1), hr(nh2), or hr(nh3)

types, the new quantities will be returned to the H history for the element only for

isw tasks where residuals are being formed for a solution step (i.e., solution command

FORM, TANG,,1, or UTAN,,1 and for history reinitialization during a time update (i.e.,

solution command, TIME). These access the task options isw equal to 3 or 6 and 14,

respectively.

If a user adds a new option for which it is desired to save the history variables, it is

necessary to set the variables hflgu and h3flgu to true as required, if no update is

wanted the variables should be set to false. These parameters are located in

logical hflgu,h3flgu
common /hdatam/ hflgu,h3flgu

5.8 Accessing global array values

Usually, FEAP passes all the information needed to compute element arrays and re-

sults, either as arguments to the elmtnn routine or as variables in common blocks

using the include statements. However, there are instances when other values may be

useful. For example it may be useful to know which degree-of-freedoms are restrained

by boundary conditions or have active equations. The information can be obtained

using the ix(*) array for node numbers (one of the arguments to the elmtnn module)

and the information in Table 3.1 for the ID array which has pointer np(31). Based on

the information in this table the array is retrieved using the code fragment

include ’cdata.h’ ! numnp

include ’pointer.h’ ! np(400) and up(200)

include ’comblk.h’ ! mr(*) and hr(*)

...

call sub_name(ix, mr(np(31)), ndf, numnp)

where any name may be substituted for sub name. Then in the module sub name one

has

CHAPTER 5. ADDING ELEMENTS 79

subroutine sub_name(ix, id, ndf, numnp)

implicit none

include ’eldata.h’ ! nel

integer ndf, numnp

integer ix(nel), id(ndf,numnp,2)

It is now possible to look at each node in the ix array to know if the node is active (a

zero value in ix(*,*,2)) or fixed (non-zero). In addition one may know the equation

number of the active degree-of-freedoms by checking values in the id(*,*,1) part of

the array (active equations are positive entries).

5.9 Elements with Finite Rotation Parameters

When considering structural elements that undergo large displacements it is usually

necessary to treat the rotation parameters for large angle changes. The nodal pa-

rameters for this case are a rotation vector θ and the finite rotations are given as an

orthogonal matrix Λ.

Λn+1 = exp[θ̂] Λn

in which θ̂ denotes a skew matrix given as

θ̂ =

 0 θ3 −θ2

−θ3 0 θ1

θ2 −θ1 0

The actual method used to update the rotations and their increments must be specified

when writing the element module ELMTnn and is performed by a user subprogram named

UROTmm where mm is a number between 01 and 10. To specify which routine is to be

used, it is necessary to include the statement

rotyp = mm

in the section of ELMTnn where isw = 1. This parameter is located in the common
erotas which has the structure:

real*8 xln
real*8 rots ,rvel ,racc ,thkl
integer rotyp
common /erotas/ xln(9,9,4),

& rots(3,9,2),rvel(3,9,2),racc(3,9,2),thkl(9),rotyp

CHAPTER 5. ADDING ELEMENTS 80

The other entries in the common are arrays that return values for each element to treat

the rotation values and rates. We shall return to their description after describing the

treatment of the global nodal data for rotations.

5.9.1 Nodal rotation treatment: UROTmm subprogram

The nodal rotation data is stored in the array xlg which is dimensioned as

xlg(9,6,numnp)

For node ng, the entries in xlg are stored as follows:

Component I/O Description
XLG(1:9,1,ng) I Rotation matrix Λn at time tn (Alterna-

tively, entries 1 to 4 may be used to store
a quaternion).

XLG(1:9,2,ng) O Rotation matrix Λna at time tna

XLG(1:9,3,ng) O Rotation matrix Λn+1 at time tn+1

XLG(1:3,4,ng) O Rotation increment angle ∆θ
XLG(4:6,4,ng) I Rotation rate ωn at time tn
XLG(7:9,4,ng) I Rotation acceleration αn at time tn
XLG(1:3,5,ng) O Rotation angle θ
XLG(4:6,5,ng) O Rotation rate ωn+a at time tn+a

XLG(7:9,5,ng) O Rotation acceleration αn+a at time tn+a

XLG(1:9,6,ng) - Rotation matrix Λ0 at time t0

While storage is provided for the 3 × 3 rotation matrices the representation may also

be specified in terms of quaternions for which only 4 components are necessary. In this

case the 9 entries may be divided into two 4 entry quantities if required. Indeed, the

space may be used in anyway necessary provided, no conflict in the way each time value

is associated to the data. Note that sufficient storage is available to define integration

methods for which the rotation is defined at an intermediate time tn+a.

For a typical node n in the mesh the location of the entries in the xlg array are obtained

from

ng = mropt(n,2)

and the routine UROTmm is called as:

CHAPTER 5. ADDING ELEMENTS 81

call urotmm(xlg(1,1,ng),xlg(1,2,ng),xlg(1,3,ng),

& xlg(1,4,ng),xlg(1,5,ng),

& xlg(4,4,ng),xlg(4,5,ng),

& xlg(7,4,ng),xlg(7,5,ng),du,tsw)

where du(1:3) are the solution increments for rotation from the solver and tsw is the

time update switch which is set according to

tsw = 1: Initialize for new time step

tsw = 2: Update within a time step

tsw = 3: Back up to beginning of time step

The entry u(1) is the location for the first entry in the rotation vector θ.

5.9.2 Local nodal rotation treatment

When each element that is associated with nodal rotation parameters is called the

rotation data is transferred to local storage in a manner similar to treatment of trans-

lations. The local data is passed to each element using the common erotas defined

above. The entries in the local arrays are extracted from the global array according to:

xln(1:9,nl,1) = xlg(1:9,1,ng)

xln(1:9,nl,2) = xlg(1:9,2,ng)

xln(1:9,nl,3) = xlg(1:9,3,ng)

xln(1:9,nl,4) = xlg(1:9,6,ng)

rots(1:3,nl,1) = xlg(1:3,4,ng)

rots(1:3,nl,2) = xlg(1:3,5,ng)

rvel(1:3,nl,1) = xlg(4:6,4,ng)

rvel(1:3,nl,2) = xlg(4:6,5,ng)

racc(1:3,nl,1) = xlg(7:9,4,ng)

racc(1:3,nl,2) = xlg(7:9,5,ng)

where nl is a local node number between 1 and 9 (the maximum provided in the current

erotas and ng is the global node number associated with each local number.

Using the above data structure one can program the updates in any manner that does

not conflict with the time treatment. The only interface to FEAP is through how the

increment du(4:6,n) is defined.

CHAPTER 5. ADDING ELEMENTS 82

Component Description
EPL(1) - EPL(3) Linear momenta
EPL(4) - EPL(6) Angular momenta
EPL(7) Kinetic energy
EPL(8) Stored energy
EPL(9) Work by external loads
EPL(10) Total energy

Table 5.9: Momenta and Energy Assignments

5.10 Energy Computation

FEAP elements provide an option to accumulate the total momenta and energy during

the solution process. The values are accumulated in the array EPL(20) when the switch

parameter isw is 13 and written to a file named Pxxxx.ene (where xxxx is extracted

from the problem input filename) whenever the solution command TIME is used. The

array EPL(2) is in the common block named ptdat6 which has the structure:

real*8 epl
integer iepl, neplts
common /ptdat6/ epl(20)0,iepl(2,200),neplts

For problems in solid mechanics the linear momenta are stored as follows:

The linear momenta are computed as:

p =

∫
Ω

ρ v dΩ

the angular momenta as:

π =

∫
Ω

(I ω + x × p) dΩ

the kinetic energy

K =

∫
Ω

ρ v · v dΩ

the stored energy as

U =

∫
Ω

W (C) dΩ

and the work by external loads as

V =

∫
Γ

(x−X) · Fext dΓ .

CHAPTER 5. ADDING ELEMENTS 83

Array Description
U(NDF,NUMNP,1) Displacement at tkn+1

U(NDF,NUMNP,2) Incremental Displacement at tkn+1 − tn
U(NDF,NUMNP,3) Incremental Displacement at tkn+1 − tk−1

n+1

UD(NDF,NUMNP,1) Velocity at tkn+1

UD(NDF,NUMNP,2) Acceleration at tkn+1

Additional arrays depend on time integrator

Table 5.10: Displacement and rate arrays at current solution state.

The value of the displacement and velocity at the current time tn+1 are passed in

ul(i,j,1) and ul(i,j,4), respectively. Note that this is true no matter which time

integration algorithm is specified.

The local values are assigned from the global arrays for displacement, which has the

pointer location hr(np(40)) and often dimensioned as u(ndf,numnp,*), and rates,

which has the pointer location hr(np(42)) and often dimensioned as ud(ndf,numnp,*)

[see Table 5.10].

5.11 Global constraints on elements

In some cases it is necessary to add constraints that affect more than a single element

in the mesh. Some constraints are applied directly to the elements. The specification of

the input data for global equations is described in the user manual for FEAP (see, Sect.

5.15). The value of the number of global equations is stored in the integer variable

geqnum and the partition to which it applies in the integer variable gpart and added

to the common blocks accessed using the statement

include ’pglob1.h’

This data is used to construct the matrix structure but is not needed directly to develop

the contributions to elements.

Given the set of constraint equations CI(ũa) = 0, where implicitly we assume that

the displacements affect at least several elements, the introduction using a perturbed

CHAPTER 5. ADDING ELEMENTS 84

Figure 5.7: Tangent matrix and residual including element and global constraints.

Lagrangian approach may be written as5

Πλ(ũa, λI) = λI

[
CI(ũa)−

1

2k
λI

]
The variation of the functional yields the result

δΠλ = δλI

[
CI(ũa)−

1

k
λI

]
+ λI

[
∂CI
∂ũa

δũa

]
The multiples of the variations are appended to each of the affected element residuals

using

δũTaPa
u = −δũTa

(
∂CI
∂ũa

)T
λI

δλIP
I
λ = −δλI

[
CI(ũa)−

1

k
λI

]
where the configuration for the terms is shown in Fig. 5.7. Note that the actual

number of nodes on an element may be nel and be less than nen. Nevertheless, the

global equations always occupy the locations shown based on nen. The values for

the Lagrange multipliers is available in an element in the array ule(100) (current

maximum for global constraints controlled by this include) which is included using

5The term with the penalty factor k may be omitted to give a classical Lagrange multiplier imple-
mentation.

CHAPTER 5. ADDING ELEMENTS 85

Type Logical Values
Coordinate globxsc gxscale

Time globtsc gtscale

Mass globmsc gmscale

Displacement globdsc gdscale(50)

Element globesc gescale(50)

Table 5.11: Global scaling parameters in pglob1.h.

include ’lmdata.h’

The remaining quantities (e.g., nen) are passed as arguments to the element or in

include files as previously described.

The terms in the tangent matrix are deduced from

d(δΠλ) = δλI

[
∂CI
∂ũa

dũa −
1

k
δIJ dλJ

]
+ δũTa

[(
∂CI
∂ũa

)T
dλI +

∂2CI
∂ũa∂ũb

dũb λI

]

and give

Sab = λI
∂2CI
∂ũa∂ũb

GaJ =

(
∂CI
∂ũa

)T
GT
bI =

(
∂CI
∂ũb

)
HIJ =

1

k
δIJ

5.12 Scaling factors for elements

When multi-physics problems are solved it may be necessary to scale equations into a

non-dimensional form. FEAP permits the scaling factors to be specified using global

mesh commands (See User Manual for details on specifying commands). The global

scaling parameters are passed to routines in the program in the pglob1.h include file.

The data consists of a logical flag and numeric values. If the data is input the logical

flag is set to .true. otherwise it is false. The parameter names and flags are shown

in Table 5.11.

CHAPTER 5. ADDING ELEMENTS 86

5.13 Dynamic periodic response in elements

The solution of linear problems may be performed in frequency if the equations are

written in complex arithmetic form (see FEAP User Manual section on periodic inputs

on linear equations). Accordingly, we let the force be expressed as

F(t) = F̂(ω) exp(i ω t) (5.1)

where i =
√
−1 and ω. The notation (̂·) denotes a complex quantity. Thus, the

intensity of the force is assumed to be a complex vector. Accordingly,

Fr = <(F̂) (5.2)

Fi = =(F̂) . (5.3)

For a linear problem the matrices M, C, and K are constant and assuming a solution

in the form:

u(t) = û(ω) exp(i ω t) (5.4)

the equation of motion for a solid mechanics problem may be written as[
−ω2 M + i ωC + K̂

]
û(ω) = F̂(ω)

Â û(ω) = F̂(ω)
(5.5)

which may be solved for each specified frequency and load to give a solution for the

û(ω).

To program the above in an element routine in FEAP the element array for the stiffness

is dimensioned as s(nst,nst,2) and that for the residual as p(nst,2). The real parts

are stored in s(nst,nst,1) and p(nst,1) and the imaginary parts in s(nst,nst,2)

and p(nst,2).

5.13.1 Viscoelastic damping

For a linear viscoelastic material the stiffness matrix in the frequency domain is written

in terms of complex moduli. Accordingly, for this case the element stiffness matrix is

also complex and may be expressed as

K̂ = Kr + iKi (5.6)

Thus, the element array is computed as

Kr =

∫
Ωe

BTDrB dΩ

Ki =

∫
Ωe

BTDiB dΩ

(5.7)

CHAPTER 5. ADDING ELEMENTS 87

The residual is obtained by computing the real and imaginary parts of the strain as

εr = B ur

εi = B ui
(5.8)

and premultiplying by the complex moduli as

p̂ =

∫
Ωe

BT [Dr + iDi] (εr + i εi) dΩ (5.9)

to obtain

pr =

∫
Ωe

BT [Drεr −Diεi] dΩ

pi =

∫
Ωe

BT [Drεi −Diεr] dΩ

(5.10)

Alternatively, the calculations may be performed from the element stiffness matrix

parts as

pr = Krur −Kiui

pi = Krui + Kiur
(5.11)

In either case, all the FEAP elements for solids and structures compute the first term

as part of the standard residual. Similarly, all the elements compute the real part of

the stiffness matrix.

5.13.2 Rayleigh damping

In Rayleigh damping we express the damping matrix as

Ĉ = a0M + a1K̂ (5.12)

thus, the complex coefficient matrix becomes

Â = −ω2M + i ω [a0M + a1 (Kr + iKi)] + Kr + iKi (5.13)

giving the real and imaginary parts as

Ar = −ω2M− ω a1 Ki + Kr

Ai = ω (a0M + a1Kr) + Ki

(5.14)

CHAPTER 5. ADDING ELEMENTS 88

5.14 Using formfe to add element functions

Access to all element operations is carried out by a call to the module formfe. Users

may add new element functions using this access as:

call formfe(np(40),pnd,pnd,pnd,dfl,dfl,dfl,dfl,isw,nl1,nl2,nl3)

where the arguments are defined in Table 5.12.

NAME Description
np(40) Pointer in hr(*) array for current solution values
pnd, Dummy pointers (can be np(26)).
dfl Logical flags (set to .false)
isw Element operation parameter (should be > 30
nl1 First element to process
nl2 Last element to process
nl3 Increment in element counter (usually 1

Table 5.12: Argument parameters for calls to formfe.

Chapter 6

UTILITY ROUTINES

The FEAP system includes several subprograms that can assist developers in writing

new modules. In the next sections we describe some of the routines which perform

numerical integration, compute shape functions and their derivatives, etc.

6.1 Numerical quadrature routines

Details on quadrature formula types and the layout and location of points and weights

may be found in standard references.[19, 20, 21, 15, 16, 17, 18] Here only the description of

subroutine calls is included together with the available options on number of points.

6.1.1 One dimensional quadrature

Line integrals may be evaluated using Gaussian quadrature in which the approximation

to an integral is given as ∫ +1

−1

f(ξ) dξ ≈
L∑
l=1

f(ξl)Wl (6.1)

where ξl are quadrature points and Wl are the weights to be applied at each point.

The weights satisfy the condition.

L∑
l=1

Wl = 2 . (6.2)

89

CHAPTER 6. UTILITY ROUTINES 90

The Gauss-Legendre formula has points |ξl| which are all less than unity. The subpro-

gram call

CALL INT1D (L , SW)

in which L is assigned an integer value between 1 and 5 returns the points and weights

are returned in the two dimensional array SW(2,*) of type REAL*8: Points in SW(1,*)

and weights in SW(2,*). The Gauss-Legendre formula integrates exactly polynomials

up to order 2*L - 1.

The Gauss-Lobato formula has two of its points at -1 and 1 with the remainder in the

interior of the interval. A routine to perform quadrature is obtain by using the call

CALL INT1DL (L , SW)

in which L is assigned an integer value between 1 and 6. The values of the points and

weights are returned in the two dimensional array SW: Points in SW(1,*) and weights

in SW(2,*).

6.1.2 Two dimensional quadrature

Two dimensional quadrature on quadrilateral domains may be performed by repeated

one-dimensional integration. The two dimensional integrations are approximated by∫∫ +1

−1

f(ξ, η) dξ dη ≈
L∑
l=1

f(ξl, ηl)Wl (6.3)

where L is the total of all quadrature points. A routine to compute n × n order

Gauss-Legendre quadrature is obtained by the call

CALL INT2D (L , LINT, SW)

where L is assigned to the number of points in each direction, LINT is returned as

the total number of points and SW(3,*) is an array containing the points and weights

according to: SW(1,l) contains values of the points ξl; SW(2,l) contains values of the

points ηl; and SW(3,l) contains values of the weights Wl.

Two dimensional quadrature on triangles may be performed using the subprograms

call

CHAPTER 6. UTILITY ROUTINES 91

Type Number Location
Points

1 1 Centroid (O(h2))
3 3 Mid-sides (O(h3))

-3 3 Interior (O(h3))
4 4 Interior (O(h4)) - Negative Wt.
6 6 Nodal (O(h3))

-6 6 Interior (O(h4))
7 7 Interior (O(h6))

-7 7 Nodal (O(h4))
12 12 Interior (O(h7))
13 13 Interior (O(h8)) - Negative Wt.

Table 6.1: Quadrature for triangles

CALL TINT2D (L , LINT, SW)

where L is a type indicator, LINT returns the number of points, and SW(4,*) is an array

which returns three area coordinates and the quadrature weight: SW(1,l) returns the

area coordinate L1l (as defined in [15, 16, 17, 18]); SW(2,l) returns the area coordinate

L2l; SW(3,l) returns the area coordinate L3l; SW(4,l) returns the weight Wl; Table

6.1 describes the admissible types, number and location of quadrature points.

6.1.3 Three dimensional quadrature

Three dimensional quadrature on brick domains may be performed by repeated one-

dimensional integration. The three dimensional integrations are approximated by∫∫∫ +1

−1

f(ξ, η, ζ) dξ dη dζ ≈
L∑
l=1

f(ξl, ηl, ζ)Wl (6.4)

where L is the total of all quadrature points. A routine to compute n × n × n order

Gauss-Legendre quadrature is obtained by the call

CALL INT3D (L , LINT, SW)

where L is assigned to the number of points in each direction, LINT is returned as

the total number of points and SW(4,*) is an array containing the points and weights

according to: SW(1,l) contains values of the points ξl; SW(2,l) contains values of the

CHAPTER 6. UTILITY ROUTINES 92

Type Number Location
Points

1 1 Centroid (O(h2))
-1 4 Nodal ()(h2))
2 4 Interior (O(h3))
3 5 Interior (O(h4)) - Negative wt.
4 11 Interior (O(h4)) - Negative wt.

-4 11 Nodal (O(h3))
5 14 Interior (O(h5))
6 16 Interior (O(h5))
8 8 Node & Face (O(h2))

Table 6.2: Quadrature for tetrahedra

points ηl; and SW(3,l) contains values of the points ζl; and SW(4,l) contains values

of the weights Wl.

Three dimensional quadrature on tetrahedra may be performed using the subprograms

call

CALL TINT3D (L , LINT, SW)

where L is a type indicator, LINT returns the number of points, and SW(5,*) is an

array which returns three area coordinates and the quadrature weight: SW(1,l) re-

turns the volume coordinate L1,l (as defined in [15, 16, 17, 18]); SW(2,l) returns the

volume coordinate L2,l; SW(3,l) returns the volume coordinate L3,l; SW(4,l) returns

the volume coordinate L4,l; SW(5,l) returns the weight Wl; Table 6.2 describes the

admissible types, number and location of quadrature points.

6.2 Shape function subprograms

Finite element approximations commonly use shape function subprograms to perform

computations of the functions and their derivatives at preselected points (often the

quadrature points). FEAP includes options to obtain the shape functions for some low

order elements (linear and quadratic order) in one and two dimensions and linear shape

functions for three dimensions. In addition a cubic Hermitian interpolation routine is

available. The calling arguments for routines is summarized below.

CHAPTER 6. UTILITY ROUTINES 93

6.2.1 Shape functions in one-dimension

The shape functions for one dimensional elements, as shown in Fig. 6.1, may be

computed using the shape function routines described below.

1

2

1

3

2

2-Node Element 3-Node Element

Figure 6.1: Line type elements in FEAP library

Lagrangian interpolation in one-dimensional isoparametric forms may be obtained us-

ing the call

CALL SHP1D (S , XL , SHP, NDM, NEL, XJAC)

where

Parameter Description
S Natural coordinate ξ
XL(NDM,*) Nodal coordinates for element
NDM Spatial dimension of mesh
NEL Number element nodes (2 or 3)
SHP(2,NEL) Shape function and derivative
XJAC Jacobian transformation

The shape functions are evaluated as: SHP(1,i) shape function derivative along the

axis of the element and SHP(2,i) the shape function Ni. In calculations integrals are

represented as ∫
L

f(Ni, Ni,s) ds =

∫ 1

−1

f [Ni(ξ), Ni,s(ξ)]XJAC(ξ) dξ (6.5)

and quadrature may be used for evaluation.

Calculation of natural coordinate derivatives only may be obtained with the call

CHAPTER 6. UTILITY ROUTINES 94

CALL SHAP1DN(S , SHP, NEL)

where

Parameter Description
S Natural coordinate ξ
SHP(2,NEL) Shape function and derivative
NEL Number element nodes (2 or 3)

where SHP(1,i contains Ni,ξ and SHP(2,i) the shape function Ni.

Cubic Hermitian interpolation (e.g., for use in straight linear beam elements) given by

w = Nw
1 w̄1 +Nw

2 w̄2 +N θ
1 θ̄1 +N θ

2 θ̄2 (6.6)

is obtained using the call

CALL SHP1DH (S , LEN , SHPW, SHPT)

where

Parameter Description
S Natural coordinate ξ
LEN Length of the element (2-node)
SHPW(4,2) Shape functions for wi
SHPT(4,2) Shape functions for θi

The arrays are evaluated as follows:

1. SHPW(1,i), SHPT(1,i) are first derivatives (e.g. Ni,x);

2. SHPW(2,i), SHPT(2,i) are second derivatives (e.g. Ni,xx);

3. SHPW(3,i), SHPT(3,i) are third derivatives (e.g. Ni,xxx); and

4. SHPW(4,i), SHPT(4,i) are shape functions (e.g. Ni).

6.2.2 Shape functions in two-dimensions

The shape functions for two dimensional triangular elements, as shown in Fig. 6.2,

and quadrilateral elements, as shown in Fig. 6.3, may be computed using the shape

function routines described below.

CHAPTER 6. UTILITY ROUTINES 95

Two-dimensional C0 isoparametric interpolation on quadrilaterals of linear, quadratic

and cubic order may be obtained using the subprogram call

CALL SHP2D (SS, XL, SHP, XJAC, NDM, NEL, IX, FLG)

where

Parameter Description
SS(2) Natural coordinates ξ, η
XL(NDM,NEL) Element coordinates in local order
NDM Spatial dimension mesh (2 or 3)
NEL Number nodes on element (4-9, 12, 16)
IX(NEL) Element global node numbers
FLG Return ξ − η derivatives if true or

x− y derivatives if false
SHP(3,NEL) Shape functions and derivatives
XJAC Jacobian transformation from x− y to ξ − η.

The array SHP stores the values in the order: SHP(1,i) derivative with respect to ξ or

x; SHP(2,i) derivative with respect to η or y; SHP(3,i) shape function.

Two-dimensional C0 isoparametric interpolation on triangles of linear, quadratic and

cubic order may be obtained using the subprogram call

CALL TRISHP (SS, XL, NDM, IORD, XJAC, SHP)

where

1 2

3

1 4 2

5

3

6

3-Node Simplex 6-Node Element

Figure 6.2: Triangular surface type elements in FEAP library

CHAPTER 6. UTILITY ROUTINES 96

1 2

34

4-Node Element

1 5 2

6

374

8

1 5 6 2

7

8

39104

11

12

8-Node Element 12-Node Element

1 5 2

6

374

8
9

1 5 6 2

7

8

39104

11

12
13 14

1516

9-Node Element 16-Node Element

Figure 6.3: Quadrilateral surface type elements in FEAP library

Parameter Description
SS(3) Area coordinates L1, L2, L3

XL(NDM,*) Element coordinates in local order
NDM Spatial dimension mesh (2 or 3)
IORD Order of interpolation (1= 3-node,2 = 6-node, 3 = 7-node, 4 =

6-node + 3 bubble, 10 = 10-node cubic)
XJAC Jacobian transformation from x− y to ξ − η
SHP(3,NEL Shape functions and derivatives

CHAPTER 6. UTILITY ROUTINES 97

The array SHP stores the values in the order: SHP(1,i) derivative with respect to

ξ or x; SHP(2,i) derivative with respect to η or y; SHP(3,i) shape function. The

parameter IORD defines the order of interpolation. If it is 1 simple 3-node triangles

with linear interpolation is returned; if 2 quadratic interpolation; if 3 the interpolation

is generated plus a cubic bubble in the seventh function. Giving the IORD parameter

as a negative returns hierarchical form for mid side nodes.

6.2.3 Shape functions in three-dimensions

The shape functions for three dimensional tetrahedral elements, as shown in Fig. 6.4,

and brick elements, as shown in Fig. 6.5, may be computed using the shape function

routines described below.

Three-dimensional C0 isoparametric interpolation on bricks of linear order (i.e., 8-node

elements) may be obtained using the subprogram call

CALL SHP3D (SS, XJAC, SHP, XL, NDM, NEL)

where

1

2

3

4

1

5

2

6

3

10

4

8

7

9

4-Node Simplex 10-Node Element

Figure 6.4: Tetrahedron solid type elements in FEAP library

CHAPTER 6. UTILITY ROUTINES 98

5

1 2

6

3

78

4

8-Node Element

5

17

1 9 2

18

6

10

3

19

7

14
13

16

8
15

12

11
4

20

5

17

1 9 2

18

6

10

3

19

7

14
13

16

8
15

12

11
4

20

22

26

25

21

24

23

27

20-Node Element 27-Node Element

Figure 6.5: Brick solid type elements in FEAP library

Parameter Description
SS(3) Natural coordinates ξ, η, ζ
XL(NDM,8) Element coordinates in local order
NDM Spatial dimension mesh (2 or 3)
NEL Number nodes on element: 8 = linear brick; 20 = serendipity

quadratic; 27 = Lagrangian quadratic; 64 = Lagrangian cubic
SHP(4,8) Shape functions and derivatives
XJAC Jacobian transformation from xyz to ξηζ.

The array SHP stores the values in the order: SHP(1,i) derivative with respect to x;

SHP(2,i) derivative with respect to y; SHP(3,i) derivative with respect to z; SHP(4,i)

shape function.

Three-dimensional C0 isoparametric interpolation on tetrahedra of linear order (i.e.,

4-node elements) may be obtained using the subprogram call

CHAPTER 6. UTILITY ROUTINES 99

CALL TETSHP (SS, XL, NDM, NEL, XJAC, SHP)

where

Parameter Description
SS(4) Volume coordinates L1, L2, L3, L4

XL(NDM,4) Element coordinates in local order
NDM Spatial dimension mesh (3)
NEL Number of nodes on element (4, 10, 11, 14, 15)
XJAC Jacobian transformation from xyz to ξηζ
SHP(4,4 Shape functions and derivatives

The array SHP stores the values in the same order as for the brick element.

6.3 Eigenvalues for 3× 3 matrix

Three dimensional problems often require the solution of a 3 × 3 eigenproblem to

generate principal values and directions. FEAP includes a special routine to calculate

the values and vectors for symmetric arrays. The routine is used by a call to the

subprogram as

CALL EIG3 (V, D, ROT)

On call to the routine V(3,3) is a REAL*8 array containing the symmetric array to

be diagonalized. On return the eigenvalues are contained in D(3) and the vectors

for each value in the columns of the V array. A Jacobi method is used with ROT an

integer parameter returning the number of rotations to diagonalize. The routine is

quite efficient compared to any attempt to compute vectors after closed form solution

of the cubic for roots.

In addition to the general eigensolution above FEAP includes options to compute

principal values of a symmetric second order tensor for two and three dimensional

problems. In two dimensional use, the call to

CALL PSTR2D (SIG, PV)

is used where SIG(4) stores stresses in the order σ11, σ22, σ33, σ12 and returns principal

values and directions in PV(3) in the order σ1, σ2, and θ, where the angle is in degrees

between x and the 1-axis. This routine does not use SIG(3).

CHAPTER 6. UTILITY ROUTINES 100

In three dimensions the principal values are obtained using the call

CALL PSTR3D (SIG, PV)

where SIG(6) stores stresses in the order σ11, σ22, σ33, σ12, σ23, σ31, and returns

principal values in PV(3) in the order σ1, σ2, σ3. Roots are ordered from most positive

to most negative.

6.4 Plot routines

Several options exist in the FEAP system to create graphical plots for data and results.

6.4.1 Mesh plots

FEAP has plot capabilities to represent some standard element shapes (provided ele-

ment numbering is according to the standard FEAP convention - see User Manual for

numbering). By default user elements are set to produce no plot of any mesh data.

To add a capability for plotting standard elements it is necessary to set the parameter

pstyp within the ISW = 1 part of the element routine. To access the parameter pstyp

it is necessary to include the common statement using

include ’eldata.h’

For continuum elements where the shape of the element is identical to the space di-

mension of the mesh the parameter may be set as

pstyp = ndm

However, if the dimension of the element topology is different from the mesh dimension

it is necessary to explicitly state the dimension. For example, in a three dimensional

problem where NDM = 3 and the element topology is two dimensional the statement is

given as

pstyp = 2

CHAPTER 6. UTILITY ROUTINES 101

Provided the nodal numbering of an element is as described in the FEAP User manual

(i.e., numbered with vertex nodes first, followed by mid-side nodes, then face nodes

and finally internal nodes) the program can use the actual number of nodes on the

element to draw each element.

Failure to include a pstyp statement may result in unpredictable plots of the mesh and

contour values.

The known types of plots for pstyp = 1 are

1. Point element with one node obtained by call

CALL PLTPT1 (IEL)

2. Line element with two nodes obtained by call

CALL PLTLN2 (IEL)

and for three node elements

CALL PLTLN3 (IEL)

The known types of plots for pstyp = 2 are:

1. Triangular element with 3-nodes obtained by call

CALL PLTRI3 (IEL)

and for 6-nodes obtained by call

CALL PLTRI6 (IEL)

2. Quadrilateral element with 4-nodes obtained by call

CALL PLQUD4 (IEL)

for 8- or 9-node elements the plot call is

CALL PLQUD8 (IEL)

and for 12- or 16-node quadrilaterals the call is

CHAPTER 6. UTILITY ROUTINES 102

CALL PLTQ16 (IEL)

The known types of plots for pstyp = 3 are:

1. Tetrahedral element with 4-nodes obtained by call

CALL PLTET4 (IEL)

and for 10-node tetrahedra the call is

CALL PLTET10(IEL)

2. Brick element with 8-nodes obtained by call

CALL PLBRK8 (IEL)

and for 20- or 27-node bricks the call is

CALL PLBRK27(IEL)

Using the above and internal extraction of element surfaces the program is able to

make some hidden surface plots in three dimensions.

6.4.2 Element data plots

Users may construct plots within their elements (i.e., an ELMTnn) and access using the

plot command:

PLOT,PELE,v1,v2,v3

In interactive mode in the plot environment it is only necessary to enter

PELE,v1,v2,v3

The values entered in v1,v2,v3 are optional and are passed to the element through a

common block as

REAL*8 ELPLT

COMMON /ELPDAT/ ELPLT(3)

CHAPTER 6. UTILITY ROUTINES 103

The PELE option calls each element with the switch parameter ISW = 20. Users merely

code whatever option they wish to include within their element module.

The standard color table is available through use of the subroutine call

CALL PPPCOL(ICOL, 0)

in which ICOL designates the color to be assigned according to Table 6.3. An exception

occurs for PostScript outputs where black and white are switched (since the background

then is assumed to be white).

ICOL COLOR ICOL COLOR
0 Black 10 Green-yellow
1 White 11 Wheat
2 Red 12 Royal blue
3 Green 13 Purple
4 Blue 14 Aquamarine
5 Yellow 15 Violet-red
6 Cyan 16 Dark slate blue
7 Magenta 17 Grey
8 Orange 18 Light grey
9 Coral

Table 6.3: Color pallet for FEAP plots

A straight line segment may be drawn to the screen in the current color between the

coordinates (x1, y1, z1) and (x2, y2, z2) using the commands

CALL PLOTL(X1,Y1,Z1, 3)

CALL PLOTL(X2,Y2,Z2, 2)

Here the basic command is

CALL PLOTL(Xi,Yi,Zi, IP)

where the three Cartesian coordinates relate to mesh coordinates (not screen values)

and IP is a parameter defined according to Table 6.4.

The perimeter of a panel is drawn with standard line drawing commands starting with

CHAPTER 6. UTILITY ROUTINES 104

IP Action
1 Start panel fill
2 Move to point
3 Draw to point

Table 6.4: Values for control of plots

CALL PLOTL(X1,Y1,Z1, 1)

and continuing with a sequence of draw commands

CALL PLOTL(Xi,Yi,Zi, 2)

(however, no lines appear on the screen) and the fill of each panel is completed by the

statement

CALL CLPAN

It should be noted that all plots within FEAP are performed in three dimensions.

For two dimensional problems no zi coordinates are available in the XL(NDM,NEN)

array and, hence, it is necessary to assign zero values for the zi coordinates before

calling a plot subprogram. If a perspective view has been requested a full use of a

xi, yi, zi specification is made. In this case a user may wish to pass the value of some

solution variable as the zi value (scaled so that it will make sense relative to the xi, yi
coordinate values). Similarly, if deformed plots are being performed it is necessary

to add (scaled) displacements to the coordinates. The current value of the scaling

parameter (i.e., variable CS) is available in labeled common PVIEW. In this case one can

add the statements (assuming here that the displacements correspond to the coordinate

directions)

DO NE = 1,NEL

DO I = 1,NDM

XP(I,NE) = XL(I,NE) + CS*UL(I,NE)

END DO ! I

END DO ! NE

(NEL is the number of connected nodes to each element and is passed through labeled

common ELDATA) before performing any deformed plots and then plot the appropriate

values of XP. Indeed, this may always be performed as the value of CS will be zero for

an undeformed plot.

CHAPTER 6. UTILITY ROUTINES 105

6.4.3 Other user plots

It is also possible for users to prepare plot outputs unrelated to elements. The plot

command

PLOT UPLOt v1 v2 v3

initiates a call to the subroutine UPLOT which has the basic structure

SUBROUTINE UPLOT(CT)

IMPLICIT NONE

REAL*8 CT(3)

...

END

The argument CT contains the values for the three parameters v1, v2, v3. The default

color is white. Direct plots in screen coordinates [lower left at (0,0); upper right at (1,1)]

may be given using the statement

CALL DPLOT(XS,YS, IP)

where XS, YS are between zero (0) and one (1) and IP is interpreted according to Table

6.4. Panels are closed using

CALL CLPAN

and colors treated according to values specified in calls to PPPCOL.

6.5 Tabular data

In some instances the parameters for loads or material data may be in tabular form.

For example, a set of x-y data is shown in Fig. 6.6(a) as a set of piecewise linear

data between the data points. The derivatives are constant between the data points

as shown in Fig. 6.6(b).

CHAPTER 6. UTILITY ROUTINES 106

(a) x-y data (b) dy/dx data

Figure 6.6: Example of tabular x-y data

If the data is stored in an array xy val(2,8) as

xy val(i,j) =

0.00 1.000
0.10 0.700
0.25 0.500
0.35 0.400
0.50 0.350
0.70 0.330
0.85 0.320
1.00 0.315

(6.7)

the table may be initialized with a single call to the module

call dy_dx_table(xy_val, dy_dx, num_x)

where dy dx(i) is an output array storing the constant derivative values and num x =

8 is the number of table entries.

The value and its derivative for any x (0 ≤ x ≤ 1) may obtained by a call to

call xy_table(x, xy_val, dy_dx, num_x, y, y_deriv)

where the output is the value of y and its derivative with respect to x. The value of an

interpolant and its derivative between xy val(1,i) and xy val(1,i+1) are computed

from

y = xy_val(2,i-1) + (x - xy_val(1,i-1))*dy_dx(i)

y_deriv = dy_dx(i)

CHAPTER 6. UTILITY ROUTINES 107

The precomputation of the dy dx(i) avoids unnecessary numerical operations (espe-

cially the divide!).

Chapter 7

Adding a user solver

ADDING USER SOLVERS

There are several public domain linear equation solution routines available at various

internet locations. Examples are SuperLU, umfpack, Pardiso to name three. To access

any of these solvers it is necessary to add user modules named umacr1.f and usolve.f

to FEAP. The module umacrx.f (x ranges between 0 and 9) has the basic form

subroutine umacr1(lct,ctl,prt)

include ’setups.h’ ! for parameter ’solver’
include ’umac1.h’ ! for parameter ’uct’

logical :: prt
character (len=15) :: lct
real (kind=8) :: ctl(3)

if(pcomp(uct,’mac1’,4)) then
uct = ’name’ ! Set name of command for solver

else
if(pcomp(lct,’off’,3)) then

solver = .true. ! Sets flag for FEAP solvers
... any other statements needed

else
solver = .false. ! Sets flag for user solver

... any other statements needed
endif

endif

end

and the module usolve.f

108

CHAPTER 7. ADDING A USER SOLVER 109

subroutine usolve(flags,b)

c-----[--.----+----.----+----.---------------------------------------]
c Purpose: Solver interface for SuperLU
c Inputs:
c flags(1) - Allocation and/or initialization phase
c flags(2) - Perform factorization for direct solutions
c flags(3) - Coefficient array unsymmetric
c flags(4) - Solve equations
c flags(5) - Purge storage of pointers
c b(*) - RHS vector
c Outputs:
c flags(5) - True if error occurs (for factor/solve only)
c-----[--.----+----.----+----.---------------------------------------]

implicit none
logical :: flags(*)
real (kind=8) :: b(*)

c Presolve setups
if(flags(1)) then

...

c Solution steps for assembled equations

else

c Factor equations
if(flags(2)) then

...
endif

c Perform solve
if(flags(4)) then

...
endif

c Purge storage in ’factor’
if(flags(5)) then

...
endif

endif
end

Appendix A

Example: 2-Node Truss Element

An element routine carries out tasks according to the value assigned to the parameter

isw as indicated in Table 5.2 To describe basic steps to program the various tasks

defined by isw, we consider next the problem of a 2-node, linear elastic truss element

for small deformation applications. The element is described in sufficient generality to

permit solution of both two and three dimensional truss problems.

A.1 Linear truss element

The governing equations for a typical truss member element, shown in Figure A.1, are

the balance of momentum equation:

∂(Aσss)

∂s
+ Abs = ρA üs

the strain-displacement equation for small deformations:

εss =
∂us
∂s

and a constitutive equation. For example, considering a linear elastic material the

constitutive equation may be written as

σss = E εss .

Boundary and initial conditions must also be specified to obtain a well posed problem;

however, our emphasis here is the derivation of the element arrays associated with the

110

APPENDIX A. EXAMPLE: 2-NODE TRUSS ELEMENT 111

above differential equations. In the above:

• s is the coordinate along the truss member axis,

• bs is a loading in direction s per unit length,

• A is the truss cross-section area,

• ρ is the mass density per unit volume,

• us is a displacement in direction s,

• v̇s is an acceleration in direction s (v = u̇),

• εss is a strain along the truss member axis, and

• σss is the stress on a truss cross section.

The equations may also be deduced from the variational equation

δΠ =

∫
L

δεss σssAds +
d∑
i=1

∫
L

δui ρA v̇i ds −
d∑
i=1

∫
L

δui bi ds + δΠext

where δΠext contains the boundary and loading terms not associated with an element.

Where, in addition to previously defined quantities, we define:

• d is the spatial dimension of the truss (1, 2, or 3),

• xi are the Cartesian coordinates in the d directions.

• L is the length of the truss member,

• δui is a virtual displacement in direction xi,

• v̇i is an acceleration in direction xi (v = u̇),

• bi is a loading in direction xi per unit length, and

• δεss is a virtual strain along the truss axis.

APPENDIX A. EXAMPLE: 2-NODE TRUSS ELEMENT 112

1

2

x

x

x

1

2

3

u

u

u

u

u

u

1

1

1

2

2

2

2

2

3

1

3

1

Figure A.1: 2-Node Truss Element

For a straight truss member the displacement along the axis, us may be expressed in

terms of the components in the directions xi as

us = l · u(s , t) =
d∑
i=1

li ui(s , t)

where t is time, u is the displacement vector with components ui, l is a unit vector

along the axis of the member with direction cosines li defined by

li =
∂xi
∂s

=
xi2 − xi1

L

L2 =
d∑
i=1

(xi2 − xi1)2

and xi1, xi2 are the coordinates of nodes 1 and 2, respectively. The displacement

components are interpolated on the 2-node truss member as

ui(s , t) = (1 − ξ)ui1(t) + ξ ui2(t) ; ξ =
s

L

in which ui1, ui2 are the displacements at nodes 1 and 2. The virtual displacements

are obtained from the above by replacing ui by δui, etc. The truss strain is

εss =
∂us
∂s

=
d∑
i=1

li
∂ui
∂s

.

APPENDIX A. EXAMPLE: 2-NODE TRUSS ELEMENT 113

Using the interpolations for the displacement components yields

εss =
1

L2

d∑
i=1

∆xi ∆ui

where

∆xi = xi2 − xi1 = li L

and

∆ui = ui2 − ui1 .

Thus, in matrix form the strain is

εss =
1

L2

d∑
i=1

[
−∆xi ∆xi

] [ui1
ui2

]

Using the above displacement interpolations, the variational equation for the truss may

be expressed in matrix form as

δΠ =
[
δui1 δui2

]{∫
L

1

L2

[
−∆xi
∆xi

]
σssAds+

∫
L

[
1− ξ
ξ

]
ρA
[
1− ξ ξ

]
ds

[
üi1
üi2

]
−
∫
L

[
1− ξ
ξ

]
bids

}
+ δΠext .

FEAP constructs the finite element arrays from the element residuals which are ob-

tained from the negative of the terms multiplying the nodal displacements. Accord-

ingly,

Ri =

[
Ri1

Ri2

]
=

∫
L

[
1 − ξ
ξ

]
bi ds

−
∫
L

1

L2

[
−∆xi
∆xi

]
σssAds −

∫
L

[
1 − ξ
ξ

]
ρA
[
1 − ξ ξ

]
ds

[
üi1
üi2

]
is the residual for the i-coordinate direction. For constant properties and loading over

an element length (note that for this case the stress will also be constant since strains

are constant on the element), the above may be integrated to yield

Ri =

[
Ri1

Ri2

]
=

1

2
bi L

[
1
1

]
− σssA

L

[
−∆xi
∆xi

]
− ρAL

6

[
2 1
1 2

] [
üi1
üi2

]
. (A.1)

For the present we assume the material model is a linear elastic in which the stress is

related to strain through

σss = E εss

APPENDIX A. EXAMPLE: 2-NODE TRUSS ELEMENT 114

where E is the Young’s modulus.

Based on a linear elastic material, the term in the residual involving σss may be written

as
σssA

L

[
−∆xi
∆xi

]
=

E A

L3

[
−∆xi
∆xi

] d∑
j=1

[
−∆xj ∆xj

] [uj1
uj2

]
.

For the linear elastic material, a stiffness matrix may be expressed as

Kij =
E A

L3

[
−∆xi
∆xi

] [
−∆xj ∆xj

]
=

[
kij −kij
−kij kij

]
where

kij =
E A

L3
∆xi ∆xj .

The residual may now be written using a stiffness and mass matrix as

Ri =

[
Ri1

Ri2

]
=

1

2
bi L

[
1
1

]
−

d∑
j=1

[
kij −kij
−kij kij

] [
uj1
uj2

]
−
[
m11 m12

m21 m22

] [
üi1
üi2

]
(A.2)

with

m11 = m22 =
ρAL

3
; m12 = m21 =

ρAL

6
.

For non-linear material behavior the residual must be computed using Equation A.1

with the stress replaced by the value computed from the constitutive equation.

The integration method for nodal quantities is taken as Newmark’s method described

in Section 5.4. The residual and tangent matrix for a Newton type method are now

available and may be inserted into R and S after noting that for the truss that the

damping matrix C is zero. The residual may be programmed directly from Equation

A.1 and an implementation using the two dimensional form r(ndf,nen) is shown in

Figure A.2.

Similarly, using the results from Section 5.4, the tangent matrix for the truss may be

programmed as indicated in Figures A.3 and A.4.

A.2 A Non-linear Theory for a Truss

A simple non-linear theory for a two or three dimensional truss which may undergo

large displacements for which the strains remain small may be developed by defining

the axial strain approximation in each member as

APPENDIX A. EXAMPLE: 2-NODE TRUSS ELEMENT 115

if(isw.eq.3 .or. isw.eq.6) then

c Compute element length

L2= 0.0d0
do i = 1,ndm

L2 = L2 + (xl(i,2) - xl(i,1))**2
end do
L = sqrt(L2)

c Compute strain-displacement matrix

Lr = 1.d0/L2
eps = 0.0d0
do i = 1,ndm

bb(i,1) = -(xl(i,2) - xl(i,1))*Lr
bb(i,2) = -bb(i,1)
eps = eps + bb(i,2)*(ul(i,2,1) - ul(i,1,1))

end do

c Compute mass terms

cmd = rhoA*L/3.0d0
cmo = cmd*0.5d0

c Form body/inertia force vector (dm = prop. ld.)

sigA = EA*eps*L
body = 0.5d0*L*dm
do i = 1,ndm

r(i,1) = body*d(6+i) - bb(i,1)*sigA
& - cmd*ul(i,1,5) - cmo*ul(i,2,5)

r(i,2) = body*d(6+i) - bb(i,2)*sigA
& - cmo*ul(i,1,5) - cmd*ul(i,2,5)

end do

Figure A.2: Element residual for two node truss

APPENDIX A. EXAMPLE: 2-NODE TRUSS ELEMENT 116

if(isw.eq.3) then

c Compute element length

L2= 0.0d0
do i = 1,ndm

L2 = L2 + (xl(i,2) - xl(i,1))**2
end do
L = sqrt(L2)

c Form stiffness multiplier

dd = ctan(1)*EA*L

c Compute strain-displacement matrix

Lr = 1.d0/L2
do i = 1,ndm

bb(i,1) = -(xl(i,2) - xl(i,1))*Lr
bb(i,2) = -bb(i,1)
db(i,1) = dd*bb(i,1)
db(i,2) = -db(i,1)

end do

Figure A.3: Truss Tangent Matrix. Part 1

APPENDIX A. EXAMPLE: 2-NODE TRUSS ELEMENT 117

c Compute stiffness terms (N.B. ndm < or = ndf)

i1 = 0
do ii = 1,2

j1 = 0
do jj = 1,2

do i = 1,ndm
do j = 1,ndm

s(i+i1,j+j1) = db(i,ii)*bb(j,jj)
end do

end do
j1 = j1 + ndf
end do
i1 = i1 + ndf

end do

c Compute mass terms and correct for inertial effects

cmd = ctan(3)*rhoA*L/3.0d0
cmo = cmd*0.5d0
do i = 1,ndm

j = i + ndf
s(i,i) = s(i,i) + cmd
s(i,j) = s(i,j) + cmo
s(j,i) = s(j,i) + cmo
s(j,j) = s(j,j) + cmd

end do
endif

Figure A.4: Truss Tangent Matrix. Part 2

APPENDIX A. EXAMPLE: 2-NODE TRUSS ELEMENT 118

εss =
∂us
∂s

+
1

2

d−1∑
j=1

(
∂unj
∂s

)2

where unj is a displacement component normal to the axis of the member. The virtual

strain from a linearization of the strain is given as

δεss =
∂δus
∂s

+
d−1∑
j=1

(
∂δunj
∂s

) (
∂unj
∂s

)
.

An algorithm to define the two orthogonal unit vectors which are normal to the member

may be constructed by taking

v = ek

where k is a direction for which a minimum value of the direction cosine li exists (for

a 2-dimensional problem defined in the x1, x2 plane v may be taken as e3). Now,

n1 =
v × l

| v × l |

and

n2 = l× n1 .

Using these vectors the two normal components of the displacement are given by

unj(s , t) = nj · u(s , t) =
d∑
i=1

nji ui(s , t)

and the derivative by

∂unj
∂s

=
d∑
i=1

nji
∂ui
∂s

.

Collecting terms and combining with previously defined quantities the virtual strain

may be written as

δεss =
∂δu

∂s
·
[

g
]

where

g = l +
d−1∑
j=1

∂unj
∂s

nj .

After differentiation of the displacement field the discrete form of the virtual strain is

given by

δεss =
1

L

[
δu1 δu2

]
·
[
− g

g

]
.

APPENDIX A. EXAMPLE: 2-NODE TRUSS ELEMENT 119

Substituting the above virtual strain expression into the weak form gives the modified

residual expression

Ri =
1

2
bi L

[
1
1

]
− σssA

[
− gi
gi

]
− ρA

L

6

[
2 1
1 2

] [
üi1
üi2

]
. (A.3)

The tangent tensor is obtained by linearizing the residual as shown previously. The

only part which is different is the term with σss. Noting that

dεss =
[

g
]
· ∂du
∂s

and

d δεss =
∂δu

∂s
· (n1 ⊗ n1 + n2 ⊗ n2) · ∂du

∂s
.

If the ni are constructed as column vectors then the tensor product becomes a matrix

defined as

G = n1 ⊗ n1 + n2 ⊗ n2 = n1 nT1 + n2 nT2 .

With these definitions, the tangent matrix for the non-linear problem is given as

Kij =
EA

L

[
− gi
gi

] [
− gj gj

]
+

σssA

L2

[
Gij − Gij

− Gij Gij

]
.

Notice that for the linear problem

gi =
∆xi
L

thus, the only difference between the linear and non-linear problem is the definition of

εss in terms of displacements, the modification for geometric effects for the gi and the

second term on the tangent matrix which is sometimes called the geometric stiffness

part.

Appendix B

Compiling in C

User modules may be added in either Fortran or C by using proper variable types for

each quantity. In Fortran variables are passed between modules either as arguments

to the module or in common blocks. To facilitate variable typing common blocks are

defined as include statements. In C these must be converted to structures.

The various variable types used in FEAP are shown in Table B.1.

Fortran Type C Type Description
integer int All variables except pointers
integer (kind=8) long int Array pointers
real (kind=4) float Some graphics variables
real (kind=8) double All floating point values

Table B.1: Fortran and C variable typing.

120

Bibliography

[1] R.L. Taylor and S. Govindjee. FEAP - A Finite Element Analysis Program, User

Manual. University of California, Berkeley. http://projects.ce.berkeley.edu/

feap.

[2] G.G. Weber, A.M. Lush, A. Zavaliangos, and L. Anand. An objective time-

integration procedure for isotropic rate-independent and rate-dependent elastic-

plastic constitutive equations. International Journal of Plasticity, 6:701–744, 1990.

[3] J.N. Lyness and C.B. Moler. Numerical differentiation of analytic functions. SIAM

Journal on Numerical Analysis, 4:202–210, 1967.

[4] J.N. Lyness. Numerical altorithms based on the theory of complex variables. In

Proceedings 22nd National Conference A.C.M., pages 125–133, 1967. Publication

P-67.

[5] J.N. Lyness. Differentiation formulas for analytic functions. Mathematics of Com-

putation, 22:352–362, 1968.

[6] W. Squire and G. Trapp. Using complex variables to estimate derivatives of real

functions. SIAM Review, 40:110–112, 1998.

[7] L.I. Cerviño and T.R. Bewley. On the extension of the complex-step deriva-

tive technique to pseudospectral algorithms. Journal of Computational Physics,

187:544–549, 2003.

[8] J. Kim, D.G. Bates, and I. Postlethwaite. Nonlinear robust performance analysis

using complex-step gradient approximation. Automatica, 42:177–182, 2006.

[9] S. Kim, J. Ryu, and M. Cho. Numerically generated tangent stiffness matrices

using the complex variable derivative method for nonlinear structural analysis.

Computer Methods in Applied Mechanics and Engineering, 200:403–413, 2011.

121

http://projects.ce.berkeley.edu/feap
http://projects.ce.berkeley.edu/feap

BIBLIOGRAPHY 122

[10] K.-L. Lai and J.L. Crassidis. Extensions of the first and second complex-step

derivative approximations. Journal of Computational and Applied Mathematics,

219:276–293, 2008.

[11] M. Tanaka, M. Fujikawa, D. Balzani, and J. Schröder. Robust numerical calcula-

tion of tangent moduli at finite strains based on complex-step derivative approxi-

mation and its application to localization analysis. Computer Methods in Applied

Mechanics and Engineering, 269:454–470, 2014.

[12] R. Kran and K. Khandelwal. Complex step derivative approximations for numer-

ical evaluation of tangent moduli. Computers and Structures, 140:1–13, 2014.

[13] S. Govindjee, J. Strain, T.J. Mitchell, and R.L. Taylor. Convergence of an effi-

cient local least-squares fitting method for bases with compact support. Com-

puter Methods in Applied Mechanics and Engineering, 213–216:84–92, 2012.

http://dx.doi.org/10.1016/j.cma.2011.11.017.

[14] T.J. Mitchell, S. Govindjee, and R.L. Taylor. A method for enforcement of Dirich-

let boundary conditions in isogeometric analysis. In Dana Mueller-Hoeppe, Stefan

Loehnert, and Stefanie Reese, editors, Recent Developments and Innovative Ap-

plications in Computational Mechanics, pages 283–293. Springer-Verlag, Berlin

Heidelberg, 2010.

[15] O.C. Zienkiewicz and R.L. Taylor. The Finite Element Method, volume 1.

McGraw-Hill, London, 4th edition, 1989.

[16] O.C. Zienkiewicz and R.L. Taylor. The Finite Element Method: The Basis, vol-

ume 1. Butterworth-Heinemann, Oxford, 5th edition, 2000.

[17] O.C. Zienkiewicz, R.L. Taylor, and J.Z. Zhu. The Finite Element Method: Its

Basis and Fundamentals. Elsevier, Oxford, 6th edition, 2005.

[18] O.C. Zienkiewicz, R.L. Taylor, and J.Z. Zhu. The Finite Element Method: Its

Basis and Fundamentals. Elsevier, Oxford, 7th edition, 2013.

[19] M. Abramowitz and I.A. Stegun, editors. Handbook of Mathematical Functions.

Dover Publications, New York, 1965.

[20] T.J.R. Hughes. The Finite Element Method: Linear Static and Dynamic Analysis.

Prentice-Hall, Englewood Cliffs, N.J., 1987.

[21] M. Gellert and R. Harbord. Moderate degree cubature formulas for 3-D tetrahedral

finite-element approximations. Communications in Applied Numerical Methods,

7:487–495, 1991.

Index

Accessing global array values, 78

Adding elements, 45

ELMTnn subprogram, 46

Arguments on subprogram ELMTnn, 48

Array allocation, 9

PALLOC subprogram, 10

Removing arrays, 11

UALLOC subprogram, 10

Calls to formfe, 88

Color in plots, 28

Common block definitions, 54

Common statements, 4

Compiling in C, 120

Complex step

tangent arrays, 43

Data input

Converting text to real, 7

PINPUT, 5

TINPUT, 6

Data output

Complex arrays, 8

Integer arrays, 8

Logical arrays, 8

Non-zero part real arrays, 7

Real arrays, 7

Debug output, 2

Dynamic periodic response, 86

Eigenvalues for 3× 3 matrix, 99

Element array names, 12

Element connection array, 13

Element control array, 14

Element degree of freedom array, 14

Element energy computation, 82

Element history variables, 75

Accessing for each element, 77

Element matrix dimensions, 51

Element options, 66

Eigenvalue shifts, 72

Mesh checks, 71

Plot captions, 68

Projection to nodes, 73

Setting active nodal equations, 66

Setting number of element equations,

69

Setting number of global equations, 70

Setting number of projections, 69

Setting plot sequence, 67

Task 1 (ISW=1), 66

Task 2 (ISW=2), 71

Task 3 (ISW=3), 72

Task 6 (ISW=6), 72

Task 8 (ISW=8), 73

TPLOt definitions, 72

Element plots

User, 102

Element task definitions, 49

Element type labels, 13

Element vector storage, 54

Elements

Active nodal equations, 66

Displacement plot captions, 68

Dynamic periodic response, 86

123

INDEX 124

Element equations, 69

Element plot captions, 68

Element projections, 69

Global equations, 70, 83

Mesh checks, 71

Plot sequence, 67

Rayleigh damping, 87

Scaling factors, 85

Viscoelastic damping, 86

Finite rotation, 79

Global equations, 83

Include statements, 4

Locating arrays

PGETD, 15

Material models, 28

Accessing element data, 38

Accessing nodal data, 38

Auto time step control, 39

History variables, 36

Internal variables, 36

UCON use, 28

UMATIn subprogram, 30

UMATLn subprogram, 30

Material property variables, 50

Mesh array names, 12

Mesh input

UMESHn subprogram, 17

Element TYPE inputs, 23

Nodal coordinate inputs, 20

Mesh manipulation

UMANIn subprogram, 25

Mesh plots, 100

Brick element, 102

Line element, 101

Point element, 101

Quadrilateral element, 101

Tetrahedral element, 102

Triangular element, 101

Newton solution

Non-linear problems, 63

Tangent array definition, 64

Numerical integration, 89

One dimension, 89

Three dimension, 91

Two dimension, 90

Partial list of element common block vari-

ables, 51, 52

Plot command

UPLOT subprogram, 105

UPLOTn subprogram, 26

Plot utility function

Fills, 103

Lines, 103

Plot utility functions

Color, 28

Fills, 27

Lines, 27

Numbers, 28

Text, 28

Polar decomposition

left, 43

right, 42

Using FEAP, 43

Precision

Integer, 1

Real, 1

Principal stress

Three dimensional, 99

Two dimensional, 99

Problem size, 1

Push forwards, 40

Quadrature, 89

One dimension, 89

INDEX 125

Three dimension, 91

Two dimension, 90

Scaling factors, 85

Setting colors, 28

Setting options

Help level, 2

Parsing statements, 1

Plot prompts, 2

PostScript, 2

Shape functions, 92

Brick isoparametric, 97

One dimensional cubic Hermitian, 94

One dimensional isoparametric, 93

One dimensional natural derivative, 93

Quadrilateral isoparametric, 94

Tetrahedral isoparametric, 98

Three dimensional isoparametric, 97

Triangular isoparametric, 95

Two dimensional isoparametric, 94

Solution array names, 12

Solution command

UMACRn subprogram, 26

Table of colors, 29

Tabular data use, 105

Transient solution

CTAN - definition, 66

Newton method, 63

Non-linear, 63

Truss element

Newmark method, 114

Non-linear theory, 114

Tangent modulus, 119

Theory, 110

Variational equation, 113

Weak form, 113

User material models

Auto time steps, 39

	1 Introduction
	1.1 Setting Program Options
	1.2 Fortran variable declaration
	1.3 Uses of Common and Include Statements

	2 Data Input and Output
	2.1 Parameters and Expressions
	2.2 Array Outputs

	3 Allocating Arrays
	4 User Functions
	4.1 Mesh Input Functions - UMESHn.
	4.1.1 Command line TX data
	4.1.2 Nodal coordinate inputs
	4.1.3 Element connectivity inputs

	4.2 Mesh Manipulation Functions - UMANIn.
	4.3 Solution Command Functions - UMACRn.
	4.4 Plot Command Functions - UPLOTn.
	4.4.1 Plot of lines and filled panels
	4.4.2 Plot numbers
	4.4.3 Plot text
	4.4.4 Plot colors

	4.5 User Material Models
	4.5.1 The UMATIn Module
	4.5.2 The UMATLn Module
	4.5.3 Accessing element and nodal data
	4.5.4 Auto time step control
	4.5.5 Push forward routines
	4.5.6 Polar decompositions
	4.5.7 Numerical differentiation: Complex step

	5 Adding Elements
	5.1 Material property storage
	5.2 Element matrix dimensions
	5.3 Elements with internal equations
	5.4 Non-linear Transient Solution Forms
	5.5 Setting Options in Elements
	5.5.1 Task 1 Options
	5.5.2 Task 2 Options
	5.5.3 Task 3 Options
	5.5.4 Task 6 Options

	5.6 Projection of element variables to nodes
	5.7 Elements with History Variables
	5.7.1 Assigning amount of storage for each element
	5.7.2 Accessing history data for each element

	5.8 Accessing global array values
	5.9 Elements with Finite Rotation Parameters
	5.9.1 Nodal rotation treatment: UROTmm subprogram
	5.9.2 Local nodal rotation treatment

	5.10 Energy Computation
	5.11 Global constraints on elements
	5.12 Scaling factors for elements
	5.13 Dynamic periodic response in elements
	5.13.1 Viscoelastic damping
	5.13.2 Rayleigh damping

	5.14 Using formfe to add element functions

	6 Utility routines
	6.1 Numerical quadrature routines
	6.1.1 One dimensional quadrature
	6.1.2 Two dimensional quadrature
	6.1.3 Three dimensional quadrature

	6.2 Shape function subprograms
	6.2.1 Shape functions in one-dimension
	6.2.2 Shape functions in two-dimensions
	6.2.3 Shape functions in three-dimensions

	6.3 Eigenvalues for 3 3 matrix
	6.4 Plot routines
	6.4.1 Mesh plots
	6.4.2 Element data plots
	6.4.3 Other user plots

	6.5 Tabular data

	7 Adding a user solver
	A Example: 2-Node Truss Element
	A.1 Linear truss element
	A.2 A Non-linear Theory for a Truss

	B Compiling in C

