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Chapter 1

Introduction

The Finite Element Analysis Program FEAP may be used to solve a wide variety of
problems in linear and non-linear solid continuum mechanics. This report presents the
background necessary to understand the formulations which are employed to develop
the two and three dimensional continuum elements which are provided with the FEAP
system. Companion manuals are available which describe the use of the program [23]
and information for those who wish to modify the program by adding user developed
modules [22].

In this report, Chapters 2 and 3 provide an introduction to problem formulation in
both a strong and a weak form. The strong form of a problem is given as a set of
partial differential equations; whereas, the weak form of a problem is associated with
either variational equations or variational theorems. Vainberg’s theorem is introduced
to indicate when a variational theorem exists for a given variational equation. A
variational statement provides a convenient basis for constructing the finite element
model. The linear heat equation is used as an example problem to describe some of
the details concerning use of strong and weak forms.

Chapters 4 and 5 provides a summary of the linear elasticity problem in its strong
and weak forms. Chapter 6 discusses implentation for displacement (irreducible) based
finite element methods. Chapters 7 and 8 then discuss alternative mixed methods for
treating problems which include constraints leading to near incompressibility. General
mixed and enhanced strain methods are presented as alternatives to develop low order
finite elements that perform well at the nearly incompressible regime. Special attention
is given to methods which can handle anisotropic elastic models where the elasticity
tangent matrix is fully populated. This is an essential feature required to handle both
inelastic and non-linear constitutive models.

Chapter 9 presents a generalization of the linear elastic constitutive model to that
for linear viscoelasticity. For applications involving an isotropic model and strong
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CHAPTER 1. INTRODUCTION 2

deviatoric relaxation compared to the spherical problem, a situation can arise at large
times in which the response is nearly incompressible – thus requiring use of elements
that perform well in this regime. Alternative representations for linear viscoelastic
behavior are presented in the form of differential models and integral equations. The
latter provides a basis for constructing an accurate time integration method which is
employed in the FEAP system.

Chapter 10 presents the general algorithm employed in the FEAP system to model
plasticity type presentations. A discussion is presented for both rate and rate indepen-
dent models, as well as, for a generalized plasticity model. Full details are provided for
the case of isotropic models. The formulation used is based on a return map algorithm
for which analytic tangent matrices for use in a Newton solution algorithm can be
obtained.

Chapter 11 discusses methods used in FEAP to solve constraints included in a finite
element model. Such constraints are evident in going to the fully incompressible case,
as well as, for the problem of intermittant contact between contiguous bodies. The
simplest approach is use of a penalty approach to embed the constraint without the
introduction of additional parameters in the algebraic problem. An extension using the
Uzawa algorithm for an augmented Lagrangian treatment is then considered and avoids
the need for large penalty parameters – which can lead to numerical ill-conditioning of
the algebraic problem. A final option is the use of Lagrange multipliers to include the
constraint. All of these methods are used as part of the FEAP system.

Chapter 12 presents a discussion for extension of problems to the fully transient case.
The Newmark method and some of its variants (e.g., an energy-momentum conserving
method) are discussed as methods to solve the transient algorithm by a discrete time
stepping method.

Finally, Chapter 13 presents a summary for extending the methods discussed in the first
twelve chapters to the finite deformation problem. The chapter presents a summary
for different deformation and stress measures used in solid mechanics together with
a discussion on treating hyper-elastic constitutive models. It is shown that general
elements which closely follow the representations used for the small deformation case
can be developed using displacement, mixed, and enhanced strain methods.



Chapter 2

Introduction to Strong and Weak
Forms

2.1 Strong form for problems in engineering

Many problems in engineering are modeled using partial differential equations (PDE).
The set of partial differential equations describing such problems is often referred to
as the strong form of the problem. The differential equations may be either linear or
non-linear. Linear equations are characterized by the appearance of the dependent
variable(s) in linear form only, whereas, non-linear equations include nonlinear terms
also. Very few partial differential equations may be solved in closed form - one case
being the linear wave equation in one space dimension and time. Some equations
admit use of solutions written as series of products of one dimensional functions for
which exact solutions may be constructed for each function. Again, in general it is not
possible to treat general boundary conditions or problem shapes using this approach.
As an example consider the Poisson equation

∂2u

∂x2
+
∂2u

∂y2
= q(x, y) (2.1)

defined on the region 0 ≤ x ≤ a, 0 ≤ y ≤ b with the boundary condition u = 0 on all
edges. This differential equation may be solved by writing u as a product form

u =
∑
m

∑
n

sin(
mπx

a
) sin(

nπy

b
)umn (2.2)

which when substituted into the equation yields

3



CHAPTER 2. INTRODUCTION TO STRONG AND WEAK FORMS 4

∑
m

∑
n

[(mπ
a

)2

+
(nπ
b

)2
]

sin(
mπx

a
) sin(

nπy

b
)umn = q(x, y) (2.3)

The solution may now be completed by expanding the right hand side as a double
sine series (i.e., Fourier series) and matching terms between the left and right sides.
Evaluation of the solution requires the summation of the series for each point (x, y)
of interest. Consequently, it is not possible to get an exact solution in closed form.
Indeed, use of a finite set of terms leads to an approxiamte solution with the accuracy
depending on the number of terms used.

More general solutions may be constructed using separable solution; however, again,
the solutions are obtained only in series form. In the sequel, we will be concerned
with the construction of approximate solutions based on the finite element method.
This is similar to a series solution in that each mesh used to construct an FE solution
represents a particular number of terms. Indeed, if sequences of meshes are constructed
by subdivision the concept of a series is also obtained since by constraining the added
nodes to have values defined by a subdivision the results for the previous mesh is
recovered - in essence this is the result for fewer terms in the series. Meshes constructed
by subdivision are sometimes referred to as a Ritz sequence due to their similarity with
solutions constructed in series form from variational equations. It is well established
that the finite element method is one of the most powerful methods to solve general
problems represented as sets of partial differential equations. Accordingly, we now
direct our attention to rewriting the set of equations in a form we call the weak form
of the problem. The weak form will be the basis for constructing our finite element
solutions.

2.2 Construction of a weak form

A weak form of a set of differential equations to be solved by the finite element method
is constructed by considering 4 steps:

1. Multiply the differential equation by an arbitrary function which contracts the
equations to a scalar.

2. Integrate the result of 1. over the domain of consideration, Ω.

3. Integrate by parts using Green’s theorem to reduce derivatives to their minimum
order.

4. Replace the boundary conditions by an appropriate construction.
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2.3 Heat conduction problem: Strong form

The above steps are made more concrete by considering an example. The governing
partial differential equation set for the transient heat conduction equation is given by

−
d∑
i=1

∂qi
∂xi

+ Q = ρ c
∂T

∂t
(2.4)

where: d is the spatial dimension of the problem; qi is the component of the heat flux
in the xi direction; Q is the volumetric heat generation per unit volume per unit time,
T is temperature; ρ is density; c is specific heat; and t is time. The equations hold for
all points xi in the domain of interest, Ω.

The following notation is introduced for use throughout this report. Partial derivatives
in space will be denoted by

( · ),i =
∂( · )

∂xi
(2.5)

and in time by

Ṫ =
∂T

∂t
(2.6)

In addition, summation convention is used where

aibi =
d∑
i=1

aibi (2.7)

With this notation, the divergence of the flux may be written as

qi,i =
d∑
i=1

∂qi
∂xi

(2.8)

Boundary conditions are given by

T (xj, t) = T̄ (2.9)

where T̄ is a specified temperature for points xj on the boundary, ΓT ,; and

qn = qini = q̄n (2.10)



CHAPTER 2. INTRODUCTION TO STRONG AND WEAK FORMS 6

where q̄nn is a specified flux for points xj on the flux boundary, Γq, and ni are direction
cosines of the unit outward pointing normal to the boundary. Initial conditions are
given by

T (xi, 0) = T̄0(xi) (2.11)

for points in the domain, Ω, at time zero. The equations are completed by giving a
relationship between the gradient of temperature and the heat flux (called the thermal
constitutive equation). The Fourier law is a linear relationship given as

qi = − kijT,j (2.12)

where kij is a symmetric, second rank thermal conductivity tensor. For an isotropic
material

kij = kδij (2.13)

in which δij is the Kronecker delta function (δij = 1 for i = j; = 0 for i 6= j). Hence for
an isotropic material the Fourier law becomes

qi = − kT,i (2.14)

The differential equation may be expressed in terms of temperature by substituting
(2.14) into (2.4). The result is

(kT,i),i + Q = ρcṪ (2.15)

The equation is a second order differential equation and for isotropic materials with
constant k is expanded for two dimensional plane bodies as

k

(
∂2T

∂x2
1

+
∂2T

∂x2
2

)
+ Q = ρc

∂T

∂t
(2.16)

We note that it is necessary to compute second derivatives of the temperature to com-
pute a solution to the differential equation. In the following, we show that, expressed
as a weak form, it is only necessary to approximate first derivatives of functions to
obtain a solution. Thus, the solution process is simplified by considering weak (varia-
tional) forms. The partial differential equation together with the boundary and initial
conditions is called the strong form of the problem.
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2.4 Heat conduction problem: Weak form

In step 1, we multiply (2.4) by an arbitrary function W (xi), which transforms the set
of differential equations onto a scalar function. The equation is first written on one
side of an equal sign. Thus

g(W, qi, T ) = W (xi)
(
ρcṪ − Q + qi,i

)
= 0 (2.17)

In step 2 we integrate over the domain, Ω. Thus,

G(W, qi, T ) =

∫
Ω

W (xi)
(
ρcṪ − Q + qi,i

)
dΩ = 0 (2.18)

In step 3 we integrate by parts the terms involving the spatial derivatives (i.e., the
thermal flux vector in our case). Green’s theorem is given by

∫
Ω

φ,i dΩ =

∫
Γ

φnidΓ (2.19)

Normally, φ is the product of two functions. Thus for

φ = V U (2.20)

we have

∫
Ω

(U V ),idΩ =

∫
Γ

(U V )nidΓ (2.21)

The left hand side expands to give

∫
Ω

[U V,i + U,i V ] dΩ =

∫
Γ

(U V )nidΓ (2.22)

which may be rearranged as∫
Ω

U V,idΩ = −
∫

Ω

U,i V dΩ +

∫
Γ

(U V )nidΓ (2.23)

which we observe is an integration by parts.

Applying the integration by parts to the heat equation gives

G(W, qi, T ) =

∫
Ω

W (xi)
(
ρcṪ − Q

)
dΩ −

∫
Ω

W,i qidΩ

+

∫
Γ

WqinidΓ = 0 (2.24)
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Introducing qn, the boundary term may be split into two parts and expressed as

∫
Γ

WqndΓ =

∫
ΓT

WqndΓ +

∫
Γq

WqndΓ (2.25)

Now the boundary condition (2.10) may be used for the part on Γq and (without any
loss in what we need to do) we can set W to zero on Γu (Note that W is arbitrary, hence
our equation must be valid even if W is zero for some parts of the domain). Substituting
all the above into (2.24) completes step 4 and we obtain the final expression

G(W, qi, T ) =

∫
Ω

W (xi)
(
ρcṪ − Q

)
dΩ −

∫
Ω

W,i qi dΩ

+

∫
Γq

Wq̄ndΓ = 0 (2.26)

If in addition to the use of the boundary condition we assume that the Fourier law is
satisfied at each point in Ω the above integral becomes

G =

∫
Ω

W
(
ρ c Ṫ − Q

)
dΩ +

∫
Ω

W,i k T,i dΩ

+

∫
Γq

W q̄n dΓ = 0 (2.27)

We note that the above form only involves first derivatives of quantities instead of the
second derivatives in the original differential equation. This leads to weaker conditions
to define solutions of the problem and thus the notion of a weak form is established.
Furthermore, there are no additional equations that can be used to give any additional
reductions; thus, (2.27) is said to be irreducible[29, 30].

2.5 Approximate solutions: The finite element method

For finite element approximate solutions, we define each integral as a sum of integrals
over each element. Accordingly, we let

Ω ≈ Ωh =

Nel∑
e=1

Ωe (2.28)
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where Ωh is the approximation to the domain created by the set of elements, Ωe is the
domain of a typical element and Nel is the number of nodes attached to the element.
Integrals may now be summed over each element and written as

∫
Ω

(·) dΩ ≈
∫

Ωh

(·) dΩ =

Nel∑
e=1

∫
Ωe

(·) dΩ (2.29)

Thus our heat equation integral becomes

G ≈ Gh =

Nel∑
e=1

∫
Ωe

W
(
ρcṪ − Q

)
dΩ −

Nel∑
e=1

∫
Ωe

W,i qi dΩ

+

Nel∑
e=1

∫
Γeq

W q̄n dΓ = 0 (2.30)

Introducing the Fourier law the above integral becomes

G ≈ Gh =

Nel∑
e=1

∫
Ωe

W
(
ρcṪ − Q

)
dΩ +

Nel∑
e=1

∫
Ωe

W,ikT,idΩ

+

Nel∑
e=1

∫
Γeq

W q̄n dΓ = 0 (2.31)

In order for the above integrals to be well defined, surface integrals between adja-
cent elements must vanish. This occurs under the condition that both W and T are
continuous in Ω. With this approximation, the first derivatives of W and T may be
discontinuous in Ω. The case where only the function is continuous, but not its first
derivatives, defines a class called a C0 function. Commonly, the finite element method
uses isoparametric elements to construct C0 functions in Ωh. Standard element inter-
polation functions which maintain C0 continuity are discussed in any standard book
on the finite element method (e.g., See [30]). Isoparametric elements, which maintain
the C0 condition, satisfy the conditions

xi =

Nel∑
I=1

NI(ξ)xIi (2.32)

for coordinates and

T =

Nel∑
I=1

NI(ξ)T I(t) (2.33)
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for temperature. Similar expressions are used for other quantities also. In the above,
I refers to a node number, NI is a specified spatial function called a shape function for
node I, ξ are natural coordinates for the element, xIi are values of the coordinates at
node I, T I(t) are time dependent nodal values of temperature, and nel is the number
of nodes connected to an element. Standard shape functions, for which all the nodal
parameters have the value of approximations to the variable, satisfy the condition

Nel∑
I=1

NI(ξ) = 1 (2.34)

This ensures the approximations contain the terms (1, xi) and thus lead to convergent
solutions. In summation convention, the above interpolations are written as

xi = NI(ξ)xIi (2.35)

and
T = NI(ξ)T I(t) (2.36)

The weight function may also be expressed as

W = NI(ξ)W I (2.37)

where W I are arbitrary parameters. This form of approximation is attributed to
Galerkin (or Bubnov-Galerkin) and the approximate solution process is often called
a Galerkin method. It is also possible to use a different approximation for the weight-
ing functions than for the dependent variable, leading to a method called the Petrov-
Galerkin process.

The shape functions for a 4-node quadrilateral element in two-dimensions may be
written as

NI(ξ) =
1

4
(1 + ξI1ξ1)(1 + ξI2ξ2) (2.38)

where ξIi are values of the natural coordinates at node I. Later we also will use an
alternative representation for these shape functions; however, the above suffices for
most developments. Derivatives for isoparametric elements may be constructed using
the chain rule. Accordingly, we may write

∂NI

∂ξi
=

∂NI

∂xj

∂xj
∂ξi

=
∂NI

∂xj
Jji (2.39)

where the Jacobian transformation between coordinates is defined by
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Jji =
∂xj
∂ξi

(2.40)

The above constitutes a set of linear equations which may be solved at each natural co-
ordinate value (e.g., quadrature point) to specify the derivatives of the shape functions.
Accordingly

∂NI

∂xj
=

∂NI

∂ξi
J−1
ji (2.41)

Using the derivatives of the shape functions we may write the gradient of the temper-
ature in two dimensions as

[
T,x1
T,x2

]
=

[
NI,x1

NI,x2

]
T I(t) (2.42)

Similarly, the gradient of the weighting function is expressed as

[
W,x1

W,x2

]
=

[
NI,x1

NI,x2

]
W I (2.43)

Finally the rate of temperature change in each element is written as

Ṫ = NI(ξ) Ṫ I(t) (2.44)

With the above definitions available, we can write the terms in the weak form for each
element as ∫

Ωe

WρcṪdΩ = W IMIJ Ṫ
J (2.45)

where

MIJ =

∫
Ωe

NI ρ cNJ dΩ (2.46)

defines the element heat capacity matrix. Similarly, the term∫
Ωe

W,i k T,i dΩ = W IKIJ T
J (2.47)

where

KIJ =

∫
Ωe

NI,i k NJ,i dΩ (2.48)

defines the element conductivity matrix. Finally,∫
Ωe

W QdΩ −
∫

Γeq

W q̄n dΓ = W IFI (2.49)
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where

FI =

∫
Ωe

NI QdΩ −
∫

Γeq

NI q̄n dΓ (2.50)

The approximate weak form may now be written as

Gh =

Nel∑
e=1

W I(MIJ Ṫ
J + KIJ T

J − FI) = 0 (2.51)

and since W I is an arbitrary parameter, the set of equations to be solved is

Nel∑
e=1

(MIJ Ṫ
J + KIJ T

J − FI) = 0 (2.52)

In matrix notation we can write the above as

MṪ + KT = F (2.53)

which for the transient problem is a large set of ordinary differential equations to be
solved for the nodal temperature vector, T. For problems where the rate of tempera-
ture, Ṫ, may be neglected, the steady state problem

KT = F (2.54)

results.

2.6 Implementation of elements into FEAP

The implementation of a finite element development into the general purpose program
FEAP (Finite Element Analysis Program) is accomplished by writing a subprogram
named ELMTnn (nn = 01 to 50) [30, 28, 22]. The subroutine must input the material
parameters, compute the finite element arrays, and output any desired quantities. In
addition, the element routine performs basic computations to obtain nodal values for
contour plots of element variables (e.g., the thermal flux for the heat equation, stresses
for mechanics problems, etc.).

The basic arrays to be computed in each element for a steady state heat equation are

KIJ =

∫
Ωe

NI,i k NJ,i dΩ (2.55)

and
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FI =

∫
Ωe

NI QdΩ −
∫

Γeq

NI q̄n dΓ (2.56)

For a transient problem is is necessary to also compute

MIJ =

∫
Ωe

NI ρ cNJ dΩ (2.57)

The above integrals are normally computed using numerical quadrature, where for
example

KIJ =
L∑
l=1

NI,i(ξl) k NJ,i(ξl)j(ξl)wl (2.58)

where j(ξ) is the determinant of J evaluated at the quadrature point ξl and wl are
quadrature weights.

FEAP is a general non-linear finite element solution system, hence it needs to compute
a residual for the equations (see FEAP User and Programmer Manual for details). For
the linear heat equation the residual may be expressed as

R = F − KT − MṪ (2.59)

A solution to a problem is achieved when

R = 0 (2.60)

Each array is computed for a single element as described in the section of the FEAP
Programmer Manual on adding an element. The listing included in Appendix A sum-
marizes an element for the linear heat transfer problem. Both steady state and transient
solutions are permitted. The heat capacity array, M, is included separately to permit
solution of the general linear eigenproblem

KΦ = MΦΛ (2.61)

which can be used to assess the values of basic time parameters in a problem. The
routine uses basic features included in the FEAP system to generate shape functions,
perform numerical quadrature, etc.

An example of a solution to a problem is the computation of the temperature in a
rectangular region encasing a circular insulator and subjected to a thermal gradient.
The sides of the block are assumed to also be fully insulated. One quadrant of the
region is modeled as shown by the mesh in Figure 2.1.
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Figure 2.1: Mesh for thermal example.

The top of the region is exposed to a constant temperature of 10Co and the symmetry
axis is assumed to be at zero temperature. The routines indicated in Tables A.1 to A.5
are incorporated into FEAP as a user element and the steady state solution computed.
The contour of temperatures is shown in Figure 2.2.
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Figure 2.2: Temperature contours for thermal example.



Chapter 3

Introduction to Variational
Theorems

3.1 Derivatives of functionals: The variation

The weak form of a differential equation is also called a variational equation. The
notion of a variation is associated with the concept of a derivative of a functional
(i.e., a function of functions). In order to construct a derivative of a functional, it is
necessary to introduce a scalar parameter which may be used as the limiting parameter
in the derivative[10]. This may be done by introducing a parameter η and defining a
family of functions given by

T η(x) = T (x) + η τ(x) (3.1)

The function τ is an arbitrary function and is related to the arbitrary function W
introduced in the construction of the weak form. The function ητ is called the variation
of the function T and often written as δT (τ(x) alone also may be called the variation
of the function)[10].

Introducing the family of functions T η into the functional we obtain, using the steady
state heat equation as an example, the result

Gη = G(W,T η) =

∫
Ω

W,i k T
η
,i dΩ −

∫
Ω

W QdΩ

+

∫
Γq

W q̄n dΓ (3.2)

The derivative of the functional with respect to η now may be constructed using con-
ventional methods of calculus. Thus,

dG

dη
= lim

η→0

Gη − G0

η
(3.3)

16
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where G0 is the value of Gη for η equal to 0. The construction of the derivative of the
functional requires the computation of variations of derivatives of T . Using the above
definition we obtain

d(T η),i
dη

=
d

dη
(T,i + ητ,i) = τ,i (3.4)

With this result in hand, the derivative of the functional with respect to η is given by

dG

dη
=

∫
Ω

W,i k τ,i dΩ (3.5)

The limit of the derivative as η goes to zero is called the variation of the functional.
For the linear steady state heat equation the derivative with respect to η is constant,
hence the derivative is a variation of G. We shall define the derivative of the functional
representing the weak form of a differential equation as

dG

dη
= A(W, τ) (3.6)

This is a notation commonly used to define inner products.

3.2 Symmetry of inner products

Symmetry of inner product relations is fundamental to the derivation of variational
theorems. To investigate symmetry of a functional we consider only terms which include
both the dependent variable and the arbitrary function. An inner product is symmetric
if

A(W, τ) = A(τ,W ) (3.7)

Symmetry of the inner product resulting from the variation of a weak form is a sufficient
condition for the existence of a variational theorem which may also be used to generate
a weak form. Symmetry of the functional A also implies that the tangent matrix
(computed from the second variation of the theorem or the first variation of the weak
form) of a Bubnov-Galerkin finite element method will be symmetric.

A variational theorem, given by a functional Π(T ), has a first variation which is iden-
tical to the weak form. Thus, given a functional Π(T ) we can construct G(W,T ) as

lim
η→0

dΠ(T η)

dη
= G(τ, T ) (3.8)

Note that use of (3.1) leads to a result where τ replaces W in the weak form. Thus,
for the variational equation to be equivalent to the weak form τ must be an arbitrary
function with the same restrictions as we established in defining W . Variational theo-
rems are quite common for several problem classes; however, often we may only have a
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functional G and desire to know if a variational theorem exists. In practice we seldom
need to have the variational theorem, but knowledge that it exists is helpful since it
implies properties of the discrete problem which are beneficial (e.g., symmetry of the
tangent matrices, minimum or stationary value, etc.). Also, existence of a variational
theorem yields a weak form directly by using (3.8).

The construction of a variational theorem from a weak form is performed as follows[25]:

1. Check symmetry of the functional A(W, τ). If symmetric then to to 2; otherwise,
stop: no varitational theorem exists.

2. Perform the following substitutions in G(W,T )

W (x) → T (x, t) (3.9)

T (x, t) → ηT (x, t) (3.10)

to define G(T, ηT )

3. Integrate the functional result from (b) with respect to η over the interval 0 to 1.

The result of the above process gives

Π(T ) =

∫ 1

0

G(T, ηT )dη (3.11)

Performing the variation of Π and setting to zero gives

lim
η→0

dΠ(T η)

dη
= G(τ, T ) = 0 (3.12)

and a problem commonly referred to as a variational theorem. A variational theorem
is a functional whose first variation, when set to zero, yields the governing differential
equations and boundary conditions associated with some problem.

For the steady state heat equation we have

G(T, ηT ) =

∫
Ω

T,i k η T,i dΩ −
∫

Ω

T QdΩ +

∫
Γq

T q̄n dΓ (3.13)

The integral is trivial and gives

Π(T ) =
1

2

∫
Ω

T,ikT,idΩ −
∫

Ω

TQdΩ +

∫
Γq

T q̄ndΓ (3.14)

Reversing the process, the first variation of the variational theorem generates a vari-
ational equation which is the weak form of the partial differential equation. The first
variation is defined by replacing T by

T η = T + ητ (3.15)
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and performing the derivative defined by (3.12). The second variation of the theorem
generates the inner product

A(τ, τ) (3.16)

If the second variation is strictly positive (i.e., A is positive for all τ), the variational
theorem is called a minimum principle and the discrete tangent matrix is positive defi-
nite. If the second variation can have either positive or negative values the variational
theorem is a stationary principle and the discrete tangent matrix is indefinite.

The transient heat equation with weak form given by

G =

∫
Ω

W
(
ρ c Ṫ − Q

)
dΩ +

∫
Ω

W,i k T,i dΩ

+

∫
Γq

W q̄n dΓ = 0 (3.17)

does not lead to a variational theorm due to the lack of the symmetry condition for
the transient term

A =
(
Ṫ , ητ

)
6= (ητ̇ , T ) (3.18)

If however, we first discretize the transient term using some time integration method,
we can often restore symmetry to the functional and then deduce a variational theorem
for the discrete problem. For example if at each time tn we have

T (tn) ≈ Tn (3.19)

then we can approximate the time derivative by the finite difference

Ṫ (tn) ≈ Tn+1 − Tn
tn+1 − tn

(3.20)

Letting tn+1 − tn = ∆t and omitting the subscripts for quantities evaluated at tn+1,
the rate term which includes both T and τ becomes

A =

(
T

∆t
, ητ

)
=
(
η
τ

∆t
, T
)

(3.21)

since scalars can be moved from either term without affecting the value of the term.
That is,

A = (T, η τ) = (η T, τ) (3.22)
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3.3 Variational notation

A formalism for constructing a variation of a functional may be identified and is similar
to constructing the differential of a function. The differential of a function f(xi) may
be written as

df =
∂f

∂xi
dxi (3.23)

where xi are the set of independent variables. Similarly, we may formally write a first
variation as

δΠ =
∂Π

∂u
δu +

∂Π

∂u,i
δu,i + · · · (3.24)

where u, u,i are the dependent variables of the functional, δu is the variation of the
variable (i.e., it is formally the ητ(x)), and δΠ is called the first variation of the func-
tional. This construction is a formal process as the indicated partial derivatives have no
direct definition (indeed the result of the derivative is obtained from (3.3)). However,
applying this construction can be formally performed using usual constructions for a
derivative of a function. For the functional (3.14), we obtain the result

δΠ =
1

2

∫
Ω

∂

∂T,i
(T,i k T,i) δT,i dΩ −

∫
Ω

∂

∂T
(T Q) δT dΩ

+

∫
Γq

∂

∂T
(T q̄n) δT dΓ (3.25)

Performing the derivatives leads to

δΠ =
1

2

∫
Ω

(k T,i + T,i k) δT,i dΩ −
∫

Ω

QδT dΩ +

∫
Γq

q̄n δT dΓ (3.26)

Collecting terms we have

δΠ =

∫
Ω

δT,i k T,i dΩ −
∫

Ω

QδT dΩ +

∫
Γq

q̄n δT dΓ (3.27)

which is identical to (3.2) with δT replacing W , etc.

This formal construction is easy to apply but masks the meaning of a variation. We
may also use the above process to perform linearizations of variational equations in
order to construct solution processes based on Newton’s method. We shall address this
aspect at a later time.



Chapter 4

Small Deformation: Linear
Elasticity

A summary of the governing equations for linear elasticity is given below. The equations
are presented using direct notation. For a presentation using indicial notation see [29]
or [30]. The presentation below assumes small (infinitesimal) deformations and general
three dimensional behavior in a Cartesian coordinate system, x, where the domain of
analysis is Ω with boundary Γ. The dependent variables are given in terms of the
displacement vector, u, the stress tensor, σ, and the strain tensor, ε. The basic
governing equations are:

1. Balance of linear momentum expressed as

∇ · σ + ρbm = ρ ü (4.1)

where ρ is the mass density, bm is the body force per unit mass, ∇ is the gradient
operator, and ü is the acceleration.

2. Balance of angular momentum, which leads to symmetry of the stress tensor

σ = σT (4.2)

3. Deformation measures based upon the gradient of the displacement vector, ∇u,
which may be split as follows

∇u = ∇(s)u + ∇(a)u (4.3)

where the symmetric part is

∇(s)u =
1

2

[
∇u + (∇u)T

]
(4.4)

21
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and the skew symmetric part is

∇(a)u =
1

2

[
∇u − (∇u)T

]
(4.5)

Based upon this split, the symmetric part defines the strain

ε = ∇(s)u (4.6)

and the skew symmetric part defines the spin, or small rotation,

ω = ∇(a)u (4.7)

In a three dimensional setting the above tensors have 9 components. However, if
the tensor is symmetric only 6 are independent and if the tensor is skew symmetric
only 3 are independent. The component ordering for each of the tensors is given
by

σ →

σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

 (4.8)

which from the balance of angular momentum must be symmetric, hence

σij = σji (4.9)

The gradient of the displacement has the components ordered as (with no sym-
metries)

∇u →

u1,1 u1,2 u1,3

u2,1 u2,2 u2,3

u3,1 u3,2 u3,3

 (4.10)

The strain tensor is the symmetric part with components

ε →

ε11 ε12 ε13

ε21 ε22 ε23

ε31 ε32 ε33

 (4.11)

and the symmetry condition
εij = εji (4.12)

The spin tensor is skew symmetric,thus,

ωij = ωji (4.13)

which implies ω11 = ω22 = ω33 = 0. Accordingly,

ω →

ω11 ω12 ω13

ω21 ω22 ω23

ω31 ω32 ω33

 =

 0 ω12 ω13

−ω12 0 ω23

−ω13 −ω23 0

 (4.14)
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The basic equations which are independent of material constitution are completed by
specifying the boundary conditions. For this purpose the boundary, Γ, is split into two
parts:

• Specified displacements on the part Γu, given as:

u = ū (4.15)

where ū is a specified quantity; and

• specified tractions on the part Γt, given as:

t = σn = t̄ (4.16)

where t̄ is a specified quantity.

In the balance of momentum, the body force was specified per unit of mass. This may
be converted to a body force per unit volume (i.e., unit weight/volume) using

ρbm = bv (4.17)

Static or quasi-static problems are considered by omitting the acceleration term from
the momentum equation (4.1). Inclusion of intertial forces requires the specification of
the initial conditions

u(x, 0) = d0(x) (4.18)

u̇(x, 0) = v0(x) (4.19)

where d0 is the initial displacement field, and v0 is the initial velocity field.

4.1 Constitutive Equations for Linear Elasticity

The linear theory is completed by specifying the constitutive behavior for the material.
In small deformation analysis the strain is expressed as an additive sum of parts. We
shall consider several alternatives for splits during the course; however, we begin by
considering a linear elastic material with an additional known strain. Accordingly,

ε = εm + ε0 (4.20)

where εm is the strain caused by stresses and is called the mechanical part, ε0 is a
second part which we assume is a specified strain. For example, ε0 as a thermal strain
is given by

ε0 = εth = α(T − T0) (4.21)
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.LP where T is temperature and T0 is a stress free temperature. The constitutive
equations relating stress to mechanical strain may be written (in matrix notation,
which is also called Voigt notation) as

σ = Dεm = D(ε − ε0) (4.22)

where the matrix of stresses is ordered as the vector

σ =
[
σ11 σ22 σ33 σ12 σ23 σ31

]T
(4.23)

the matrix of strains is ordered as the vector (note factors of 2 are used to make shearing
components the engineering strains, γij)

ε =
[
ε11 ε22 ε33 2 ε12 2 ε23 2 ε31

]T
(4.24)

and D is the matrix of elastic constants given by

D =


D11 D12 D13 D14 D15 D16

D21 D22 D23 D24 D25 D26

D31 D32 D33 D34 D35 D36

D41 D42 D43 D44 D45 D46

D51 D52 D53 D54 D55 D56

D61 D62 D63 D64 D65 D66

 (4.25)

Assuming the existence of a strain energy density, W (εm), from which stresses are
computed as

σab =
∂W

∂εmab
(4.26)

the elastic modulus matrix is symmetric and satisfies

Dij = Dji (4.27)

Using tensor quantities, the constitutive equation for linear elasticity is written in
indicial notation as:

σab = Cabcd(εcd − ε0cd) (4.28)

The transformation from the tensor to the matrix (Voigt) form is accomplished by the
index transformations shown in Table 4.1

Thus, using this table, we have

C1111 → D11 ; C1233 → D43 ; etc. (4.29)

The above set of equations defines the governing equations for use in solving linear
elastic boundary value problems in which the inertial forces may be ignored. We next
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Tensor Matrix Index
Index 1 2 3 4 5 6
ab 11 22 33 12 23 31

21 32 13

Table 4.1: Transformation of indices from tensor to matrix form

discuss some variational theorems which include the elasticity equations in a form
amenable for finite element developments.

For the present, we assume that inertial forces may be ignored. The inclusion of inertial
forces precludes the development of variational theorems in a simple form as noted in
the previous chapter. Later, we can add the inertial effects and use time discrete
methods to restore symmetry to the formulation.



Chapter 5

Variational Theorems: Linear
Elasticity

5.1 Hu-Washizu Variational Theorem

Instead of constructing the weak form of the equations and then deducing the existence
of a variational theorem, as done for the thermal problem, a variational theorem which
includes all the equations for the linear theory of elasticity (without inertial forces)
will be stated. The variational theorem is a result of the work of the Chinese scholar,
Hu, and the Japanese scholar, K. Washizu [26], and, thus, is known as the Hu-Washizu
variational theorem. The theorem may be written as

I(u,σ, ε) =
1

2

∫
Ω

εT D ε dΩ −
∫

Ω

εT D ε0 dΩ

+

∫
Ω

σT (∇(s)u − ε) dΩ −
∫

Ω

uT bv
dΩ

−
∫

Γt

uT t̄ dΓ −
∫

Γu

tT (u − ū)dΓ = Stationary (5.1)

Note that the integral defining the variational theorem is a scalar; hence, a transpose
may be introduced into each term without changing the meaning. For example,

I =

∫
Ω

aT b dΩ =

∫
Ω

(aT b)T dΩ =

∫
Ω

bT a dΩ (5.2)

A variational theorem is stationary when the arguments (e.g., u, σ, ε) satisfy the condi-
tions where the first variation vanishes. To construct the first variation, we proceed as
in the previous chapter. Accordingly, we introduce the variations to the displacement,
U, the stress, S, and the strain, E, as

uη = u + ηU (5.3)

26
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ση = σ + η S (5.4)

εη = ε + ηE (5.5)

and define the single parameter functional

Iη = I(uη,ση, εη) (5.6)

The first variation is then defined as the derivative of Iη with respect to η and evaluated
at η = 0. For the Hu-Washizu theorem the first variation defining the stationary
condition is given by

dIη

dη

∣∣∣∣
η=0

=

∫
Ω

ETDεdΩ −
∫

Ω

ETDε0dΩ

+

∫
Ω

ST (∇(s)u − ε)dΩ +

∫
Ω

σT (∇(s)U − E)dΩ

−
∫

Ω

UTbvdΩ −
∫

Γt

UT t̄dΓ

−
∫

Γu

nTS(u − ū)dΓ −
∫

Γu

tTUdΓ = 0 (5.7)

The first variation may also be constucted using 3.23 for each of the variables. The
result is

δI =

∫
Ω

δεTDεdΩ −
∫

Ω

δεTDε0dΩ

+

∫
Ω

δσT (∇(s)u − ε)dΩ +

∫
Ω

σT (∇(s)δu − δε)dΩ

−
∫

Ω

δuTbvdΩ −
∫

Γt

δuT t̄dΓ

−
∫

Γu

nT δσ(u − ū)dΓ −
∫

Γu

tT δudΓ = 0 (5.8)

and the two forms lead to identical results.

In order to show that the theorem in form 5.7 is equivalent to the equations for linear
elasticity, we need to group all the terms together which multiply each variation func-
tion (e.g., the U, S, E). To accomplish the grouping it is necessary to integrate by
parts the term involving ∇(s)U. Accordingly,∫

Ω

σT∇(s)UdΩ = −
∫

Ω

UT∇ · σdΩ +

∫
Γt

tTUdΓ +

∫
Γu

tTUdΓ (5.9)
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Grouping all the terms we obtain

dIη

dη

∣∣∣∣
η=0

=

∫
Ω

ET [D(ε − ε0) − σ]dΩ

+

∫
Ω

ST (∇(s)u − ε)dΩ −
∫

Ω

UT (∇ · σ + bv)dΩ

+

∫
Γt

UT (t − t̄)dΓ −
∫

Γu

nTS(u − ū)dΓ = 0 (5.10)

The fundamental lemma of the calculus of variations states that each expression mul-
tiplying an arbitrary function in each integral type must vanish at each point in the
domain of the integral. The lemma is easy to prove. Suppose that an expression does
not vanish at a point, then, since the variation is arbitrary, we can assume that it is
equal to the value of the non-vanishing expression. This results in the integral of the
square of a function, which must then be positive, and hence the integral will not be
zero. This leads to a contradiction, and thus the only possibility is that the assumption
of a non-vanishing expression is false.

The expression which multiplies each variation function is called an Euler equation of
the variational theorem. For the Hu-Washizu theorem, the variations multiply the con-
stitutive equation, the strain-displacement equation, the balance of linear momentum,
the traction boundary condition, and the displacement boundary condition. Indeed,
the only equation not contained is the balance of angular momentum.

The Hu-Washizu variational principle will serve as the basis for most of what we need
in the course. There are other variational principles which can be deduced directly
from the principle. Two of these, the Hellinger-Reissner principle and the principle
of minimum potential energy are presented below since they are also often used in
constructing finite element formulations in linear elasticity.

5.2 Hellinger-Reissner Variational Theorem

The Hellinger-Reissner principle eliminates the strain as a primary dependent variable;
consequently, only the displacement, u, and the stress, σ, remain as arguments in
the functional for which variations are constructed. The strains are eliminated by
developing an expression in terms of the stresses. For linear elasticity this leads to

ε = ε0 + D−1σ (5.11)

The need to develop an expression for strains in terms of stresses limits the application
of the Hellinger-Reissner principle. For example, in finite deformation elasticity the
development of a relation similar to 5.11 is not possible in general. On the other
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hand, the Hellinger-Reissner principle is an important limiting case when considering
problems with constraints (e.g., linear elastic incompressible problems, thin plates as
a limit case of the thick Mindlin-Reissner theory). Thus, we shall on occasion use the
principle in our studies. Introducing 5.11 into the Hu-Washizu principle leads to the
result

I(u,σ) = −1

2

∫
Ω

ε0TDε0dΩ − 1

2

∫
Ω

σTD−1σdΩ

−
∫

Ω

σTε0dΩ +

∫
Ω

σT∇(s)udΩ −
∫

Ω

uTbvdΩ

−
∫

Γt

uT t̄dΓ −
∫

Γu

tT (u − ū)dΓ (5.12)

The Euler equations for this principle are

∇(s)u = ε0 + D−1σ (5.13)

together with 4.1, 4.15 and 4.16. The strain-displacement equations are deduced by
either directly stating 4.6 or comparing 5.11 to 5.13. The first term in 5.12 may be
omitted since its first variation is zero.

5.3 Minimum Potential Energy Theorem

The principle of minimum potential energy eliminates both the stress, σ, and the strain,
ε, as arguments of the functional. In addition, the displacement boundary conditions
are assumed to be imposed as a constraint on the principle. The MPE theorem may
be deduced by assuming

ε = ∇(s)u (5.14)

and
u = ū (5.15)

are satisfied at each point of Ω and Γ, respectively. Thus, the variational theorem is
given by the integral functional

I(u) =
1

2

∫
Ω

(∇(s)u)TD(∇(s)u)dΩ −
∫

Ω

(∇(s)u)TDε0dΩ

−
∫

Ω

uTbvdΩ −
∫

Γt

uT t̄dΓ (5.16)

Since stress does not appear explicitly in the theorem, the constitutive equation must
be given. Accordingly, in addition to 5.14 and 5.15 the relation

σ = D(ε − ε0) (5.17)
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is given.

The principle of minimum potential energy is often used as the basis for developing a
displacement finite element method.



Chapter 6

Displacement Finite Element
Methods

A variational equation or theorem may be solved using the direct method of the calculus
of variations. In the direct method of the calculus of variations the dependent variables
are expressed as a set of trial functions multiplying parameters. This reduces a steady
state problem to an algebraic process and a transient problem to a set of ordinary
differential equations. In the finite element method we divide the region into elements
and perform the approximations on each element. As indicated in Chapter 2 the region
is divided as

Ω ≈ Ωh =

Mel∑
e=1

Ωe (6.1)

and integrals are defined as∫
Ω

( · ) dΩ ≈
∫

Ωh

( · ) dΩ =

Mel∑
e=1

∫
Ωe

( · ) dΩ (6.2)

In the above Mel is the total number of elements in the finite element mesh. A similar
construction is performed for the boundaries. With this construction the parts of the
variational equation or theorem are evaluated element by element.

The finite element approximation for displacements in an element is introduced as

u(ξ, t) =

Nel∑
α=1

Nα(ξ) uα(t) = Nα(ξ) uα(t) (6.3)

where Nα is the shape function at node α, ξ are natural coordinates for the element,
uα are the values of the displacement vector at node α and repeated indices imply
summation over the range of the index. Using the isoparametric concept

31
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x(ξ) = Nα(ξ) xα (6.4)

where xα are the cartesian coordinates of nodes, the displacement at each point in an
element may be computed.

In the next sections we consider the computation of the external force (from applied
loads) and the internal force (from stresses) by the finite element process.

6.1 External Force Computation

In our study we will normally satisfy the displacement boundary conditions u = ū by
setting nodal values of the displacement to the values of ū evaluated at nodes. That
is, we express

ū = Nα(ξ) ūα(t) (6.5)

and set

ūα(t) = ū(xα, t) (6.6)

We then will assume the integral over Γu is satisfied and may be omitted. This step
is not necessary but is common in most applications. The remaining terms involving
specified applied loads are due to the body forces, bv, and the applied surface tractions,
t̄. The terms in the variational principal are

Πf =

∫
Ωe

uTbv dΩ +

∫
Γte

uT t̄ dΓ (6.7)

Using (6.3) in (6.7) yields

Πf = (uα)T
[∫

Ωe

Nα bv dΩ +

∫
Γte

Nα t̄ dΓ

]
= (uα)T Fα (6.8)

where Fα denotes the applied nodal force vector at node α and is computed from

Fα =

∫
Ωe

Nα bv dΩ +

∫
Γte

Nα t̄ dΓ (6.9)

6.2 Internal Force Computation

The stress divergence term in the Hu-Washizu variational principle is generated from
the variation with respect to the displacements, u, of the term

Πσ =

∫
Ωe

(∇(s)u)T σ dΩ =
∑
e

∫
Ωe

(∇(s)u)T σ dΩ (6.10)
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Using the finite element approximation for displacement, the symmetric part of the
strains defined by the symmetric part of the deformation gradient in each element is
given by

∇(s)u = ε(u) = Bα uα (6.11)

where Bα is the strain displacement matrix for the element. If the components of the
strain for 3-dimensional problems are ordered as

εT =
[
ε11 ε22 ε33 2 ε12 2 ε23 2 ε31

]
(6.12)

and related to the displacement derivatives by

εT =
[
u1,1 u2,2 u3,3 (u1,2 + u2,1) (u2,3 + u3,2) (u3,1 + u1,3)

]
(6.13)

the strain-displacement matrix is expressed as:

Bα =


Nα,1 0 0

0 Nα,2 0
0 0 Nα,3

Nα,2 Nα,1 0
0 Nα,3 Nα,2

Nα,3 0 Nα,1

 (6.14)

where

Nα,i =
∂Nα

∂xi
(6.15)

For a 2-dimensional plane strain problem the non-zero strains reduce to

εT =
[
ε11 ε22 ε33 2 ε12

]
(6.16)

and are expressed in terms of the displacement derivatives as

εT =
[
u1,1 u2,2 0 (u1,2 + u2,1)

]
(6.17)

thus, Bα becomes:

Bα =


Nα,1 0

0 Nα,2

0 0
Nα,2 Nα,1

 (6.18)

Finally, for a 2-dimensional axisymmetric problem (with no torsional loading) the
strains are

εT =
[
ε11 ε22 ε33 2 ε12

]
(6.19)

and are expressed in terms of the displacements as

εT =
[
u1,1 u2,2 u1/x1 (u1,2 + u2,1)

]
(6.20)
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The strain-displacement matrix for axisymmetry, Bα, becomes:

Bα =


Nα,1 0

0 Nα,2

Nα/x1 0
Nα,2 Nα,1

 (6.21)

where x1, x2 now denote the axisymmetric coordinates r, z, respectively1

The stress divergence term for each element may be written as

Πσe = (uα)T
∫

Ωe

(Bα)T σ dΩ (6.22)

In the sequel we define the variation of this term with respect to the nodal displace-
ments, uα, the internal stress divergence force. This force is expressed by

Pα(σ) =

∫
Ωe

(Bα)T σ dΩ (6.23)

which gives
Πσe = (uα)T Pα(σ) (6.24)

The stress divergence term is a basic finite element quantity and must produce a
response which is free of spurious modes or locking tendencies. Locking is generally
associated with poor performance at or near the incompressible limit. To study the
locking problem we split the formulation into deviatoric and volumetric terms.

6.3 Split into Deviatoric and Spherical Parts

For problems in mechanics it is common to split the stress and strain tensors into their
deviatoric and spherical parts. For stress the spherical part is the mean stress defined
by

p =
1

3
tr(σ) =

1

3
σkk (6.25)

For infinitesimal strains the spherical part is the volume change defined by

θ = tr(ε) = εkk (6.26)

The deviatoric part of stress , s, is defined so that its trace is zero. The stress may be
written in terms of the deviatoric and pressure parts (pressure is spherical part) as

σ = s + p1 (6.27)

1For axisymmetry it is also necessary to replace the volume element by dΩ → x1 dx1 dx2 and the
surface element by dΓ → x1 dS where dS is an boundary differential in the x1 - x2 plane.
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where, 1 is the rank two identity tensor, which in matrix notation is given by the vector

mT =
[
1 1 1 0 0 0

]
(6.28)

In matrix form the pressure is given by

p =
1

3
mT σ (6.29)

thus, the deviatoric part of stresses now may be computed as

s = σ − 1

3
m mT σ =

(
I − 1

3
m mT

)
σ (6.30)

where, in three dimensions, I is a 6× 6 identity matrix. We note that the trace of the
stress gives

mT σ = 3 p = mT s + pmT m = mT s + 3 p (6.31)

and hence
mT s = 0 (6.32)

as required.

For subsequent developments, we define

Idev = I − 1

3
m mT (6.33)

as the deviatoric projector. Similarly, the volumetric projector is defined by

Ivol =
1

3
m mT (6.34)

These operators have the following properties

I = Idev + Ivol (6.35)

Idev = Idev Idev = (Idev)
m (6.36)

Ivol = Ivol Ivol = (Ivol)
m (6.37)

and
Ivol Idev = Idev Ivol = 0 (6.38)

In the above m is any positive integer power. We note, however, that inverses to the
projectors do not exist.

Utilizing the above properties, we can operate on the strain to define its deviatoric and
volumetric parts. Accordingly, the deviatoric and volumetric parts are given by

ε = e +
1

3
θ 1 (6.39)
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where e is the strain deviator and θ is the change in volume. Using matrix notation
we have

θ = mT ε (6.40)

we obtain
e = Idev ε ; mT e = 0 (6.41)

The strain-displacement matrix also may now be written as a deviatoric and volumetric
form. Accordingly, we use the strain split

ε(u) = Bα uα = (Bdev)α uα + (Bvol)α uα (6.42)

where
Bdev = Idev B (6.43)

and

Bvol = Ivol B =
1

3
m b (6.44)

where
b = mT B ; mT Bdev = 0 (6.45)

For 3-dimensional problems

bα =
[
Nα,1 Nα,2 Nα,3

]
(6.46)

is the volumetric strain-displacement matrix for a node α in its basic form. In 2-
dimensional plane problems the volumetric strain-displacement matrix is given by

bα =
[
Nα,1 Nα,2

]
(6.47)

and for 2-dimensional axisymmetric problems

bα =
[
Nα,1 +Nα/x1 Nα,2

]
(6.48)

The deviatoric matrix Bdev is constructed from (6.39) and yields for the 3-dimensional
problem

Bdev =
1

3


2Nα,1 −Nα,2 −Nα,3

−Nα,1 2Nα,2 −Nα,3

−Nα,1 −Nα,2 2Nα,3

3Nα,2 3Nα,1 0
0 3Nα,3 3Nα,2

3Nα,3 0 3Nα,1

 (6.49)

and for the 2-dimensional plane problem

Bdev =
1

3


2Nα,1 −Nα,2

−Nα,1 2Nα,2

−Nα,1 −Nα,2

3Nα,2 3Nα,1

 (6.50)
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Finally, the deviatoric matrix for the 2-dimensional axisymmetric problem is given by:

Bdev =
1

3


(2Nα,1 −Nα/x1) −Nα,2

−(Nα,1 +Nα/x1) 2Nα,2

(2Nα/x1 +Nα,1) −Nα,2

3Nα,2 3Nα,1

 (6.51)

6.4 Internal Force - Deviatoric and Volumetric Parts

The above split of terms is useful in writing the internal force calculations in terms of
deviatoric and volumetric parts. Accordingly,

Pα =

∫
Ωe

BT
α σ dΩ =

∫
Ωe

BT
α (s + pm) dΩ (6.52)

which after rearrangement gives

Pα =

∫
Ωe

BT
α s dΩ +

∫
Ωe

BT
α m p dΩ (6.53)

If we introduce

B = Bdev + Bvol = Bdev +
1

3
m b (6.54)

and use the properties defined above for products of the deviatoric and volumetric
terms, then

Pα =

∫
Ωe

(BT
dev)α s dΩ +

∫
Ωe

bTα p dΩ (6.55)

Since the volumetric term has no effect on the deviatoric stresses the residual may also
be computed from the simpler form in terms of Bα alone as

Pα =

∫
Ωe

BT
α s dΩ +

∫
Ωe

bTα p dΩ (6.56)

Thus, the internal force is composed of the sum of deviatoric and volumetric parts.

6.5 Constitutive Equations for Isotropic Linear Elas-

ticity

The constitutive equation for isotropic linear elasticity may be expressed as

σ = λ1 tr(ε) + 2µ ε (6.57)
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where λ and µ are the Lamé parameters which are related to Young’s modulus, E, and
Poisson’s ratio, ν, by

λ =
ν E

(1 + ν)(1 − 2 ν)
; µ =

E

2 (1 + ν)
(6.58)

For different values of ν, the Lamé parameters have the following ranges

0 ≤ ν ≤ 1

2
; 0 ≤ λ ≤ ∞ (6.59)

and

0 ≤ ν ≤ 1

2
;

E

2
≥ µ ≥ E

3
(6.60)

For an incompressible material ν is 1
2
; and λ is a parameter which causes difficulties

since it is infinite. Another parameter which is related to λ and µ is the bulk modulus,
K, which is defined by

K = λ +
2

3
µ =

E

3 (1 − 2 ν)
(6.61)

We note that K also tends to infinity as ν approaches 1
2
.

The constitutive equation for an isotropic material is given in indicial form by

σij = λ δij εkk + 2µ εij (6.62)

and for a general linear elastic material by

σij = cijkl εkl (6.63)

where cijkl are the elastic moduli. For an isotropic material the elastic moduli are then
related by

cijkl = λ δij δkl + µ (δik δjl + δil δjk) (6.64)

We note that the above definition for the moduli satisfies all the necessary symmetry
conditions; that is

cijkl = cklij = cjikl = cijlk (6.65)

The relations may be transformed to matrix (Voigt) notation following Table 4.1 and
expressed as

σ = D ε (6.66)

where the elastic moduli are split into

D = λDλ + µDµ (6.67)
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with

Dλ =


1 1 1 0 0 0
1 1 1 0 0 0
1 1 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 = m mT = 3 Ivol (6.68)

Dµ =


2 0 0 0 0 0
0 2 0 0 0 0
0 0 2 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 (6.69)

used as non-dimensional matrices to split the moduli.2

If the moduli matrices are premultiplied by Ivol and Idev the following results are ob-
tained

Ivol Dλ = Dλ (6.70)

Idev Dλ = 0 (6.71)

Ivol Dµ =
2

3
m mT =

2

3
Dλ (6.72)

and

Dµ Idev = Idev Dµ =
1

3


4 −2 −2 0 0 0
−2 4 −2 0 0 0
−2 −2 4 0 0 0
0 0 0 3 0 0
0 0 0 0 3 0
0 0 0 0 0 3

 = Ddev (6.73)

Once Ddev has been computed it may be noted that

Idev Ddev = Ddev Idev = Ddev (6.74)

Ivol Ddev = Ddev Ivol = 0 (6.75)

and, thus, it is a deviatoric quantity.

In the following section, the computation of the element stiffness matrix for a displace-
ment approach is given and is based upon the above representations for the moduli.

2Note that in Dµ the terms multiplying shears have unit values since engineering shear strains are
used (i.e., γij = 2 εij).
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6.6 Stiffness for Displacement Formulation

The displacement formulation is accomplished for a linear elastic material by noting
that the constitutive equation is given by (for simplicity ε0 is assumed to be zero)

σ = D ε (6.76)

The strains for a displacement approach are given by

ε = Bβ uβ (6.77)

where uβ are the displacements at node β.

Constructing the deviatoric and volumetric parts may be accomplished by writing

s = Idev σ = Idev D ε = Idev(λDλ + µDµ)ε (6.78)

and
pm = Ivol D ε = Ivol(λDλ + µDµ)ε (6.79)

If we use the properties of the moduli multiplied by the projectors, the above equations
reduce to

s = µDdev ε = µDµ e = µDµ(Bdev)β uβ (6.80)

and

pm = (λ +
2

3
µ) Dλ ε = K Dλ ε = K m(mT ε) = K m θ (6.81)

Thus, the pressure constitutive equation is

p = K θ (6.82)

Noting that the volumetric strain may be computed from

θ = bβ uβ (6.83)

the pressure for the displacement model may be computed from

p = K bβ uβ (6.84)

We recall from Section 6.2 that

Pα =

∫
Ωe

(BT
dev)α s dΩ +

∫
Ωe

bTα p dΩ (6.85)

Using the above definitions and identities the internal force vector may be written as

Pα =

∫
Ωe

µ (BT
dev)α Dµ (Bdev)β dΩ uβ +

∫
Ωe

K bα bTβ dΩ uβ (6.86)
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and, thus, for isotropic linear elasticity, the stiffness matrix may be deduced as the
sum of the deviatoric and volumetric parts

Kαβ = (Kdev)αβ + (Kvol)αβ (6.87)

where

(Kdev)αβ =

∫
Ωe

µ (BT
dev)α Dµ (Bdev)β dΩ =

∫
Ωe

µBT
α Ddev Bβ dΩ (6.88)

and

(Kvol)αβ =

∫
Ωe

K bα bTβ dΩ =

∫
Ωe

K BT
α Dλ Bβ dΩ (6.89)

6.7 Numerical Integration

Generally the computation of integrals for the finite element arrays is performed us-
ing numerical integration (i.e., quadrature). The use of the same quadrature for each
part of the stress divergence terms given above (in P and K) leads to a conventional
displacement approach for numerically integrated finite element developments. The
minimum order quadrature which produces a stiffness with the correct rank (i.e., num-
ber of element degree-of-freedoms less the number of rigid body modes) will be called
a standard or full quadrature (or integration). The next lowest order of quadrature is
called a reduced quadrature. Alternatively, use of standard quadrature on one term and
reduced quadrature on another leads to a method called selective reduced quadrature.

A typical integral is evaluated by first transforming the integral onto a natural coordi-
nate space ∫

Ωe

f(x) dΩ =

∫
2

f(x(ξ)) j(ξ) dξ (6.90)

where
∫
2

denotes integration over the natural coordinates ξ, dξ denotes dξ1dξ2 in
2-dimensions, and j(ξ) is the determinant of the jacobian transformation

J(ξ) =
∂x

∂ξ
(6.91)

Thus
j(ξ) = detJ(ξ) (6.92)

The integrals over 2 are approximated using a quadrature formula, thus∫
2

f(x(ξ)) j(ξ) dξ ≈
L∑
l=1

f(x(ξl)) j(ξl)wl (6.93)
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where ξl and wl are quadrature points and quadrature weights, respectively. For brick
elements in three dimensions and quadrilateral elements in two dimensions, the inte-
gration is generally carried out as a product of one-dimensional Gaussian quadrature.
Thus, for 2-dimensions, ∫

2

g(ξ) dξ =

∫ 1

−1

∫ 1

−1

g(ξ) dξ1 dξ2 (6.94)

and for 3-dimensions ∫
2

g(ξ) dξ =

∫ 1

−1

∫ 1

−1

∫ 1

−1

g(ξ) dξ1 dξ2 dξ3 (6.95)

Using quadrature, the stress divergence is given by

Pα =
L∑
l=1

Bα(ξl)
T σ(ξl) j(ξl)wl (6.96)

and the stiffness matrix is computed by quadrature as

Kαβ =
L∑
l=1

Bα(ξl)
T D (ξl)Bβ(ξl) j(ξl)wl (6.97)

Similar expressions may be deduced for each of the terms defined by the deviatoric/volu-
metric splits. The use of quadrature reduces the development of finite element arrays
to an algebraic process involving matrix operations. For example, the basic algorithm
to compute the stress divergence term is given by:

1. Initialize the array Pα

2. Loop over the quadrature points, l

• Compute j(ξl)wl = c

• Compute the matrix in the integrand, (e.g., Bα(ξl)
T σl = Aα).

• Accumulate the array, e.g.,

Pα ← Pα + Aα c (6.98)

3. Repeat step 2 until all quadrature points in element are considered.

Additional steps are involved in computing the entries in each array. For example, the
determination of Bα requires computation of the derivatives of the shape functions,
Nα,i, and computation of σl requires an evaluation of the constitutive equation at the
quadrature point. The evaluation of the shape functions is performed using a shape
function subprogram. In FEAP, a shape function routine for 2 dimensions is called
shp2d and is accessed by the call
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call shp2d( xi, xl, shp, xsj, ndm, nel, ix, flag)

where

xi natural coordinate values (ξ1, ξ2) at quadrature
point (input)

xl array of nodal coordinates for element
(xl(ndm,nen)) (input)

shp array of shape functions and derivatives
(shp(3,nen)) (output)

xsj jacobian determinant at quadrature point
(output)

ndm spatial dimension of problems (input)
nel number of nodes on element (between 3 and

9) (input)
ix array of global node numbers on element

(ix(nen)) (input)
flag flag, if false derivatives returned with

respect to x (input); if true
derivatives returned with respect to ξ.

The array of shape functions has the following meanings:

shp(1,A) is NA,1

shp(2,A) is NA,2

shp(3,A) is NA,3

The quadrature points may be obtained by a call to int2d:

call int2d( l, lint, swg )

where

l -number of quadrature points in each direction
(input).

lint -total number of quadrature points (output).
swg -array of natural coordinates and weights (output).

The array of points and weights has the following meanings:
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swg(1,L) is ξ1,L

swg(2,L) is ξ2,L

swg(3,L) is wL

Using the above two utility subprograms a 2-dimensional formulation for displacement
(or mixed) finite element method can be easily developed for FEAP. An example, is
element elmt01 which is given in Appendix B.
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Mixed Finite Element Methods

7.1 Solutions using the Hu-Washizu Variational The-

orem

A finite element formulation which is free from locking at the incompressible or nearly
incompressible limit may be developed from a mixed variational approach. In the work
considered here we use the Hu-Washizu variational principle, which we recall may be
written as

Π(u,σ, ε) =
1

2

∫
Ω

εT D ε dΩ −
∫

Ω

εT D ε0 dΩ

+

∫
Ω

σT (∇(s)u − ε) dΩ −
∫

Ω

uTbv dΩ

−
∫

Γt

uT t̄ dΓ −
∫

Γu

tT (u − ū) dΓ = Stationary (7.1)

In the principle, displacements appear up to first derivatives, while the stresses and
strains appear without any derivatives. Accordingly, the continuity conditions we may
use in finite element approximations are C0 for the displacements and C−1 for the
stresses and strains (a C−1 function is one whose first integral will be continuous).
Appropriate interpolations for each element are thus

u(ξ) = NI(ξ) uI(t) (7.2)

σ(ξ) = φα(ξ)σα(t) (7.3)

and
ε(ξ) = ψα(ξ) εα(t) (7.4)

45
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where φα(ξ) and ψα(ξ) are interpolations which are continuous in each element but
may be discontinuous across element boundaries.1 The parameters σα and εα are not
necessarily nodal values and, thus, may have no direct physical meaning.

If, for the present, we ignore the integral for the body force, and the traction and
displacement boundary integrals and consider an isotropic linear elastic material, the
remaining terms may be split into deviatoric and volumetric parts as

Π(u,σ, ε) =
1

2

∫
Ω

µ εT Ddev ε dΩ −
∫

Ω

µ εT Ddev ε
0 dΩ

+

∫
Ω

sT [e(u) − e] dΩ (7.5)

+
1

2

∫
Ω

K θ2 dΩ −
∫

Ω

K θ θ0 dΩ +

∫
Ω

p[θ(u) − θ] dΩ

where
e(u) = Idev∇(s)u (7.6)

and
θ(u) = tr(∇(s)u) = ∇ · u (7.7)

are the strain-displacement relations for the deviatoric and volumetric parts, respec-
tively.

Constructing the variation for the above split leads to the following Euler equations
which hold in the domain Ω:

1. Balance of Momentum

∇ · (s + 1 p) + bv = 0 (7.8)

which is also written as

div(s + 1 p) + bv = 0 (7.9)

2. Strain-Displacement equations

e(u) − e = 0 (7.10)

θ(u) − θ = 0 (7.11)

3. Constitutive equations
µDdev ε − s = 0 (7.12)

K θ − p = 0 (7.13)

1Strictly, φα and ψα need only be piecewise continuous in each element; however, this makes the
evaluation of integrals over each element more difficult and to date is rarely used.
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In addition the boundary conditions for Γu and Γt are obtained.

Using the interpolations described above, the Hu-Washizu variational theorem may be
approximated by summing the integrals over each element. Accordingly,

Π(u,σ, ε) ≈ Πh(u,σ, ε) =
∑
e

Πe(u,σ, ε) (7.14)

If the deviatoric part is approximated by taking

e = e(u) (7.15)

for each point of Ω, this part of the problem is given as a displacement model. The
variational expression (7.5) becomes

Π(u, p, θ) =
1

2

∫
Ω

µ εT (u) Ddev ε(u) dΩ −
∫

Ω

µ εT (u) Ddev ε
0 dΩ

+
1

2

∫
Ω

K θ2 dΩ −
∫

Ω

K θ θ0 dΩ

+

∫
Ω

p [θ(u) − θ] dΩ (7.16)

which may be split into integrals over the elements as

Π(u, p, θ) ≈ Πh(u, p, θ) =
∑
e

Πe(u, p, θ) (7.17)

A mixed approximation may now be used to describe the pressure and the volume
change in each element. Accordingly, we assume

p(ξ) = φα(ξ) pα(t) = φ(ξ) p (7.18)

θ(ξ) = φα(ξ) θα(t) = φ(ξ)θ (7.19)

where it is noted that the same approximating functions are used for both p and theta.
If the material is isotropic linear elastic, the use of the same functions will permit an
exact satisfaction of the constitutive equation, (7.13) at each point of the domain of an
element. For other situations, the constitutive equation may be approximately satisfied.
Recall that the strain-displacement equations for a finite element approximation are
given by

ε(u) = BI uI (7.20)

Thus, the finite element approximation for the mixed formulation may be written as

Πe(u,p,θ) = (uI)T
[

1

2

∫
Ωe

µBT
I Ddev BJ dΩ uJ −

∫
Ωe

µBT
I Ddev ε

0 dΩ

]
+ θT

[
1

2

∫
Ωe

K φT φ dΩθ −
∫

Ωe

K φT θ0 dΩ

]
+ pT

[ ∫
Ωe

φT bJ dΩ uJ −
∫

Ωe

φT φ dΩθ

]
(7.21)
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If we define the following matrices:

k =

∫
Ωe

K φT φ dΩ (7.22)

π0 =

∫
Ωe

K φT θ0 dΩ (7.23)

h =

∫
Ωe

φT φ dΩ (7.24)

gI =

∫
Ωe

φT bI dΩ (7.25)

and recall that the deviatoric stiffness is defined as

(Kdev)IJ =

∫
Ωe

BT
I Ddev BJ dΩ (7.26)

and denote the effects of initial deviatoric strains as

(P0
dev)I =

∫
Ωe

µBT
I Ddev ε

0 dΩ =

∫
Ωe

µBT
I Dµ e0 dΩ (7.27)

where e0 are the deviatoric initial strains. The mixed variational terms become

Πe(u,p,θ) = (uI)T
[

1

2
(Kdev)IJ uJ − (P0

dev)I

]
+ θT

[
1

2
kθ − π0

]
+ pT

[
gJ uJ − hθ

]
(7.28)

If we denote the variations of pressure and volume change as

pη = p + ηΠ (7.29)

θη = θ + ηΘ (7.30)

the first variation of (7.28) may be written in the matrix form

dΠe

dη
=

[
(UI)T ,ΠT ,ΘT

] (Kdev)IJ gJ 0
gTI 0 −h
0 −h k

 uJ

p
θ


−

(P0
dev)I
0
π0

 (7.31)
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or in variational notation as

δΠe =
[
(δuI)T , δpT , δθT

] (Kdev)IJ gJ 0
gTI 0 −h
0 −h k

 uJ

p
θ


−

(P0
dev)I
0
π0

 (7.32)

We note that the parameters p and θ (and their variations Π and Θ) are associated
with a single element, consequently, from the stationarity condition, the last two rows
of the above matrix expression must vanish and may be solved at the element level.
The requirement for a solution to exist is that2

nθ ≥ np (7.33)

where nθ and np are the number of parameters associated with the volume change and
pressure approximations, respectively. We have satisfied this requirement by taking
an equal number for the two approximations. Also, since we used the same functions
for the two approximations, the matrix h is square and positive definite (provided our
approximating functions are linearly independent), consequently, we may perform the
element solutions by inverting only h. The solution to (7.32) is

θ = h−1 gJ uJ (7.34)

and the solution to the third row is

p = h−1(kθ − π0) (7.35)

Substitution of the above results into the first equation gives

dΠe

dη
= (UI)T

([
(Kdev)IJ + gTI h−1 k h−1 gJ

]
uJ

− (P0
dev)I − gTI h−1 π0

)
(7.36)

Finally, by defining a modified volumetric strain-displacement matrix as

b̄I = h−1 gJ (7.37)

the above simplifies to

dΠe

dη
= (UI)T

[(
(Kdev)IJ + b̄TI k b̄J

)
uJ − (P0

dev)I − b̄TI π
0
]

(7.38)

2This is a mixed patch test requirement. See [30].
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The volumetric stiffness for the mixed formulation is given as

(Kvol)IJ = b̄TI k b̄J (7.39)

and the volumetric initial force by

(P0
vol)I = b̄TI π

0 (7.40)

The stress divergence term for the mixed model formulation is computed from

PI =

∫
Ωe

BT
I (s + pm) dΩ (7.41)

where the deviatoric stress is expressed by the displacement approximation as

s = µDdev(BJ uJ − ε0) (7.42)

and the pressure is expressed by the mixed approximation as

p = φ(ξ) h−1 (kθ − π0) (7.43)

7.2 Finite Element Solution for Mixed Formulation

The mixed finite element solution for the linear elastic problem requires selecting a set
of approximating functions for φ. The number of φ functions will affect the rank of
the volumetric terms. The modified volumetric stiffness has a rank which is given by

rank(Kvol) = min ( rank(b̄), rank(k) ) (7.44)

Provided the approximations for φ are linearly independent, and the number is small
compared to the number of degrees-of-freedom on the element, the rank will normally
be that of k. For example, 4-node quadrilateral or 8-node brick elements can use a
single function

φ1 = 1 (7.45)

for the approximating space. This gives a rank of 1 for the volumetric stiffness. The
requirement for the approximation is guided by the principle that: (1) we use the
minimum number of functions which make K have correct rank for a single element,
and (2) the functions produce an element which is invariant with respect to the input
data. For example, if we show that two functions are sufficient for a 2-dimensional
element, use of

φ1 = 1 ; φ2 = ξ1 (7.46)
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would not be good since the element is not invariant with respect to a permutation in
the definition of ξ1 and ξ2. Several alternatives are possible, one being

φ1 = 1 ; φ2 = ξ1 + ξ2 (7.47)

another is to use 3 functions with

φ1 = 1 ; φ2 = ξ1 ; φ3 = ξ2 (7.48)

The actual functions selected must be subjected to further evaluations to decide which
best meets the objectives of the problem solution.

An algorithm to implement the above mixed model for linear elasticity where D is
constant in each element may be summarized as:

1. Initialize arrays: gI , h, k, π0. FEAP will initialize K and the element residual.

2. Loop over quadrature points, l

(a) Compute shape functions: In 2-d problems FEAP uses,

NI(ξl) = shp(3, I, l) (7.49)

NI , i(ξl) = shp(i, I, l) (7.50)

(b) Compute the volume element times the quadrature weight

jl wl = dv(l) (7.51)

3. Loop over quadrature points, l

(a) Compute the volumetric strain matrices, gI and h.

4. Invert h and compute b̄I
b̄I = h−1gI (7.52)

5. Loop over quadrature points, l

(a) Compute strain-displacement matrix, B, and strains, ε

εl = [Idev BI(ξl) +
1

3
mφ(ξl) b̄I ] u

I (7.53)

(b) Compute quadrature stresses and π0

σl = D (εl − ε0) (7.54)
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(c) Compute the residual

RI = FI −
lint∑
l=1

BT
I (ξl)σl j(ξl)Wl (7.55)

(d) Compute the deviatoric tangent, Kdev

(e) Compute the volumetric local tangent, k

6. Compute the tangent, K

K = Kdev + b̄T k b̄ (7.56)

7.3 Mixed Solutions for Anisotropic Linear Elastic

Materials

A more general form of the Hu-Washizu principle is needed to consider either anisotropic
linear elastic materials or inelastic materials in which there is coupling between volu-
metric and deviatoric effects. In this section we construct the form of the functional
for an anisotropic linear elastic material. Accordingly, we have

σ = D [ε − ε0] (7.57)

where D is a symmetric matrix in which there may be coupling between the deviatoric
and volumetric strain effects. It is now assumed that a finite element solution will be
constructed in which deviatoric strains, e, are computed directly from the displace-
ments but the volumetric strain, θ, is computed from a mixed form. Accordingly,

ε̄ = Idev ε(u) +
1

3
m θ (7.58)

A stress may be computed from ε̄ as

σ̄ = D [Idev (ε(u) − ε0) +
1

3
m (θ − θ0)] (7.59)

where θ0 = mTε0. The stress may be split into deviatoric and pressure parts as

σ̄ = s̄ + m p̄ (7.60)

where

s̄ = Idev D [Idev (ε(u) − ε0) +
1

3
m (θ − θ0)] (7.61)

and

p̄ =
1

3
mT D [Idev (ε(u) − ε0) +

1

3
m (θ − θ0)] (7.62)
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If we define
Ddev = Idev D Idev (7.63)

d =
1

3
Idev D m (7.64)

dvol =
1

9
mT D m (7.65)

s0 = − Ddev ε
0 − d θ0 (7.66)

and
p0 = − dT ε0 − dvol θ

0 (7.67)

then the stress may be written as

σ̄ = Ddev ε(u) + d θ +
1

3
m (dTε(u) + dvol θ) + s0 + m p0 (7.68)

This form of the stress may be multiplied by the virtual ε̄ and integrated over the
domain to obtain part of the variational equation associated with the strain energy.
Subsequently, adding the terms associated with the mixed volumetric pressure and
volume change Vainberg’s theorem may be used to obtain a variational theorem. Al-
ternatively, the stress and strain splits may be substituted into 7.1. The result is

Π(u, p, θ) =
1

2

∫
Ω

[
ε(u) θ

] [Ddev d
dT dvol

] [
ε(u)
θ

]
dΩ

+

∫
Ω

(ε(u) s0 + θ p0) dΩ

+

∫
Ω

p [θ(u) − θ] dΩ + Πext (7.69)

This form of the variational principle is equivalent to 7.16 which was deduced for
isotropic materials. The added terms in 7.69 are all associated with d which defines a
coupling between deviatoric and volumetric strains. For isotropy d is zero.

If we introduce finite element interpolations using standard displacement interpolation
together with the pressure and volume interpolations given by 7.18 and 7.19, the first
variation of 7.69 for a single element is

δΠe =
[
δûTI δθ̂

T
] ∫

Ωe

{[
BT
I DdevBJ BT

I dφ
φTdTBJ φTdvolφ

] [
ûJ
θ̂

]
+

[
BT
I s0

φTp0

]}
dΩ + δp̂T

∫
Ωe

φT
[
bJ −φ

]
dΩ

[
ûJ
θ̂

]
+

[
δûTI δθ̂

T
] ∫

Ωe

[
bTI φ
−φTφ

]
dΩ p̂ + δIext (7.70)
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The variational equation 7.70 may be expressed in terms of stresses by substituting the
interpolations into 7.61 and 7.62 resulting in

δΠe =
[
δûTI δθ̂

T
] ∫

Ωe

[
BT
I s̄

φT p̄

]
dΩ

+ δp̂T
∫

Ωe

φT
[
bJ −φ

]
dΩ

[
ûJ
θ̂

]
+

[
δûTI δθ̂

T
] ∫

Ωe

[
bTI φ
−φTφ

]
dΩ p̂ + δIext (7.71)

Since the interpolations for the pressure and volume change are associated with a single
element it is possible to solve for their parameters at the element level. Accordingly,
the multiple of δp̂ yields∫

Ωe

φT bJ dΩ ûJ =

∫
Ωe

φT φ dΩ θ̂ = h θ̂ (7.72)

which yields
θ̂ = b̄I ûI = h−1gI ûI (7.73)

where h and gI are as defined in 7.24 and 7.25, respectively. similarly, the equation
multiplying δθ̂ yields the equation∫

Ωe

φT p̄ dΩ =

∫
Ωe

φT φ dΩ p̂ = h p̂ (7.74)

Using these results, the first integral in the variational equation defines the stress
divergence terms

δΠσ = δûTI

[∫
Ω

BT
I s̄ dΩ + b̄TI

∫
Ω

φT p̄ dΩ

]
(7.75)

which upon use of the definitions for the mixed pressure, p, and the mixed volumetric
strain displacement equation, b̄I , yields

δΠσ = δûTI

∫
Ω

BT
I [s̄ + m p] dΩ (7.76)

The stress of the mixed method is defined as

σ = s̄ + m p (7.77)

and, in general, is not equal to σ̄. The stress σ̄, however, is the stress which is computed
from the constitutive equation for each material. Thus, when we later consider other
material models (e.g., viscoelasticity, plasticity, etc.) the effective material moduli are
the ones computed by linearizing the constitutive equation expressed in terms of the
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σ̄ stresses. The residual for a finite element formulation is most efficiently computed
from the mixed stress and we note the result is identical to the form of the standard
displacement model except for the stress expression used.

The tangent matrix may be expressed in terms of the displacements alone by writing
the variational equation 7.70 as

δΠe =
[
δûTI δθ̂

T
δp̂T

] (Kdev)IJ kI gJ
kTJ kvol −h
gTI −h 0

 ûI
θ̂
p̂


+ δΠ0 + δΠext (7.78)

Using the solutions to 7.72 and 7.74 the dependence of 7.78 on θ̂ and p̂ may be
eliminated to give

δΠe = δûTI K̄IJ ûJ + δΠ0 + δΠext (7.79)

where
K̄IJ = (Kdev)IJ + kIb̄J + b̄TI kTJ + b̄TI kvolb̄J (7.80)

The algorithm for the development of a mixed element based upon the above may be
summarized as:

1. Numerical integration of strain matrices

(a) Compute φ = [1, ξ1, ξ2, · · · ] (for the 4-node element φ = 1

(b) Compute arrays

h =

∫
Ωe

φTφ dΩ (7.81)

gI =

∫
Ωe

φTbJ dΩ (7.82)

2. Mixed volumetric strain displacement matrix

(a) Compute b̄I = h−1gI

3. Constitution computation for each quadrature point

(a) Compute
ε = BI ûI (7.83)

θ = φ(ξ) b̄I ûI (7.84)

ε̄ = Idev ε +
1

3
m θ (7.85)

σ̄ = D[ε̄ − ε0] (7.86)
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p̄ =
1

3
mT σ̄ (7.87)

π̄ =

∫
Ωe

φT p̄ dΩ (7.88)

4. Mixed Pressure

(a) Compute p = φ(ξ) h−1 π̄

5. Residual and Stiffness Integrals

(a) Compute mixed stress σ = Idev σ̄ + m p

(b) Compute

Rσ
I = −

∫
Ωe

BT
I σ dΩ (7.89)

(Kdev)IJ =

∫
Ωe

BT
I Ddev Bd

JΩ (7.90)

kI =

∫
Ωe

BT
I dφ dΩ (7.91)

kvol =

∫
Ωe

φT dvol φ dΩ (7.92)

6. Stiffness assembly

(a) Compute

K̄IJ = (Kdev)IJ + kIb̄J + b̄TI kTJ + b̄TI kvol b̄J (7.93)

7.4 Hu-Washizu Variational Theorem: General Prob-

lems

The finite element approximation for the mixed formulation of a general linear elastic
material (i.e., anistotropic behavior) may be written for a typical element as

Πe(u,p,θ) =
1

2

∫
Ωe

εT D ε dΩ −
∫

Ωe

εT D ε0 dΩ

+ p (∇ · u − θ) dΩ (7.94)

Using the approximations introduced for the isotropic model for the displacement and
mixed volume change gives

ε = Idev BI uI +
1

3
mφ(ξ)θ (7.95)
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which when introduced into the variational theorem gives

Πe(u,p,θ) =
1

2

∫
Ωe

[
Idev BI uI +

1

3
mφ(ξ)θ

]T
D
[
Idev BI uI

+
1

3
mφ(ξ)θ

]
dΩ −

∫
Ωe

[
Idev BI uI +

1

3
mφ(ξ)θ

]T
D ε0 dΩ

+ pT
[ ∫

Ωe

φT bJ dΩ uJ −
∫

Ωe

φT φ dΩθ

]
(7.96)

For symmetric D, we can define the following matrices:

(Kdev)IJ =

∫
Ωe

BT
I Idev D Idev BJ dΩ (7.97)

(Kco)J =
1

3

∫
Ωe

φT mT D Idev BJ dΩ (7.98)

k =
1

9

∫
Ωe

φT mT D mφ dΩ (7.99)

π0 =
1

3

∫
Ωe

φT m D ε0 dΩ (7.100)

h =

∫
Ωe

φT φ dΩ (7.101)

gI =

∫
Ωe

φT bI dΩ (7.102)

and denote the effects of initial deviatoric strains as

(P0
dev)I =

∫
Ωe

BT
I Idev D ε0 dΩ (7.103)

The mixed variational terms become

Πe(u,p,θ) =
1

2
[(uI)T (Kdev)IJ uJ + 2θT (Kco)J uJ + θT kθ]

− (uI)T (P0
dev)I − θT π0 + pT gI uI − pT hθ (7.104)

The first variation of (7.104) may be written in the matrix form

dΠe

dη
=

[
(UI)T ,ΠT ,ΘT

] (Kdev)IJ gI (Kco)I
gTJ 0 −h

(KT
co)J −h k

 uJ

p
θ


−

(P0
dev)I
0
π0

 (7.105)
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Recall that the terms which multiply the variations in pressure, Π, and the variation in
the volume change, Θ, are associated with individual elements, and, thus, the second
row of (7.105) may be solved at the element level to give the parameters for the volume
change, θ, as

θ = h−1 gJ uJ (7.106)

and the solution to the third row is

p = h−1[(Kco)J uJ + kθ − π0] (7.107)

Defining a modified volumetric strain-displacement matrix as

b̄I = h−1 gJ (7.108)

Substitution of the above results into the first equation gives

dΠe

dη
= (UI)T

([
(Kdev)IJ + b̄TI (Kco)J + (KT

co)Ib̄J + b̄TI k b̄J
]

uJ

− (P0
dev)I − b̄TI π

0
)

(7.109)

Thus, the stiffness matrix for the general anisotropic linear elastic formulation is given
by

KIJ = (Kdev)IJ + b̄TI (Kco)J + (KT
co)Ib̄J + b̄TI k b̄J (7.110)

This operation may be performed after all the integrals over the element are evaluated.

The matrices which involve the elastic moduli may be simplified by defining some
reduced terms. Accordingly, we let3

d =
1

3
D m (7.112)

Also, define

dvol =
1

9
mTD m =

1

3
mT d (7.113)

Then
D Idev = D − d mT (7.114)

or
Idev D = D − m dT (7.115)

3If D is not symmetric, equations (7.112) through (7.117) must be modified. Essentially, this
requires a computation of two d terms as

dR = Dm ; dL = DT m (7.111)

and using these in the remaining equations instead of d (note, when D is symmetric the dR and dL
terms are equal).
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which gives

1

3
Idev D m =

1

3
(D − m dT ) m = d − dvol m = ddev (7.116)

Finally, the deviatoric part of the modulus is now defined in terms of the above as

Ddev = Idev D Idev = D − d mT − m dT + dvol m mT (7.117)

For isotropy, the above expressions reduce to:

dvol = K (7.118)

d =
[
K K K 0 0 0

]T
(7.119)

ddev = 0 (7.120)

and

Ddev =
1

3
µ


4 −2 −2 0 0 0
−2 4 −2 0 0 0
−2 −2 4 0 0 0
0 0 0 3 0 0
0 0 0 0 3 0
0 0 0 0 0 3

 (7.121)

The matrices for the mixed treatment of the symmetric D anisotropic case are com-
puted as:

(Kdev)IJ =

∫
Ωe

BT
I Ddev BJ dΩ (7.122)

(Kco)J =

∫
Ωe

φT dTdev BJ dΩ (7.123)

and

k =

∫
Ωe

dvol φ
T φ dΩ (7.124)

The matrix for the initial strains is computed as

π0 =

∫
Ωe

φT dT ε0 dΩ (7.125)

which is a 1× 6 vector.
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7.4.1 Example: Interpolations linear for u and constant φ

As an example, we consider the case where the set of shape functions for the displace-
ments is the tri-linear interpolation

NI(ξ) =
1

8
(1 + ξI1 ξ1) (1 + ξI2 ξ2) (1 + ξI3 ξ3) (7.126)

where ξIi are the values of the natural coordinates at the I-node. The interpolation for
the pressure (and volume change) is constant

φ1 = 1 (7.127)

This element is often called B1-P0 (order 1 interpolations for the brick element, order 0
for the pressure/volume change). In 2-dimensions the element is Q1-P0, for the order 1
quadrilateral. Higher order elements are also defined, for example, the Q2-P1 element
uses quadratic interpolation for displacements (Lagrange interpolations) and linear for
the pressure with

φ(ξ) =
[
1 ξ1 ξ2

]
(7.128)

Alternatively, it is possible to use the interpolations

φ(ξ) =
[
1 x1(ξ) x2(ξ)

]
(7.129)

The matrices for the B1-P0 (or Q1-P0) element reduce to

(Kco)J =

∫
Ωe

dTdev BJ dΩ (7.130)

which is a column vector (of size 1× 24). For isotropy, this matrix is zero. The volume
stiffness becomes:

k =

∫
Ωe

dvol dΩ (7.131)

which is a 1× 1 matrix and for constant dvol becomes

k = kvol = dvol Ωe (7.132)

where Ωe is the volume of the element. For isotropy kvol is the bulk modulus times the
element volume. The other matrices in the stiffness are

h = h =

∫
Ωe

dΩ = Ωe (7.133)

and

gI =

∫
Ωe

bI dΩ (7.134)
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which gives the modified volumetric strain-displacement equation

b̄I =
1

Ωe

gI =
1

Ωe

∫
Ωe

bI dΩ (7.135)

The initial strain term is computed as

π0 =

∫
Ωe

dT ε0 dΩ (7.136)

For the mixed element the internal force is computed using

PI =

∫
Ωe

BT
I (s(u) + pm) dΩ (7.137)

where the deviatoric part of the stress is computed from the displacement form, and
the pressure is computed from the mixed form

p =
1

Ωe

(
[(Kco)J + kvol b̄J ] uJ − π0

)
(7.138)



Chapter 8

Enhanced Strain Mixed Method

8.1 Hu-Washizu Variational Theorem for Linear Elas-

ticity

An alternative to the mixed finite element method discussed previously is given by
the enhanced strain method [17]. The enhanced strain method is related to earlier
works which utilized incompatible displacement modes; however, the method does not
have the deficiencies which are present in the earlier works. Enhanced strains provide
great flexibility in designing accurate finite element models for problems which have
constraints or other similar types of difficulties. In the enhanced strain method we
again use the Hu-Washizu variational principle, which we recall may be written for
linear elasticity as

Π(u,σ, ε =
1

2

∫
Ω

εT D ε dΩ −
∫

Ω

εT D ε0 dΩ

+

∫
Ω

σT (∇(s)u − ε) dΩ −
∫

Ω

uTbv dΩ

−
∫

Γt

uT t̄ dΓ −
∫

Γu

tT (u − ū) dΓ = Stationary (8.1)

The strain tensor is expressed as an additive sum of the symmetric gradient of the
displacement vector, ∇(s)u, and the enhanced strains, ε̃, and written as

ε(u, ε̃) = ∇(s)u + ε̃(ξ) (8.2)

62
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If we again ignore the integral for the body force and the traction and displacement
boundary integrals, upon use of (8.2) the remaining terms become

Π(u,σ, ε̃) =
1

2

∫
Ω

(∇(s)u + ε̃)T D (∇(s)u + ε̃) dΩ

−
∫

Ω

(∇(s)u + ε̃)T D ε0 dΩ −
∫

Ω

σT ε̃ dΩ (8.3)

Introducing the variations for each function as

uη = u + ηU (8.4)

ση = σ + η S (8.5)

and
ε̃η = ε̃ + η Ẽ (8.6)

the variation for the above enhanced principle is given by

dΠ

dη
=

∫
Ω

(∇(s)U)T D (∇(s)u + ε̃ − ε0) dΩ

+

∫
Ω

ẼT [D (∇(s)u + ε̃ − ε0) − σ] dΩ −
∫

Ω

ST ε̃ dΩ (8.7)

After integration by parts of the variation of the displacement gradient term (and also
considering the body force term), the following Euler equations are obtained for the
domain Ω:

1. Balance of momentum

div [D (∇(s)u + ε̃ − ε0)] + bv = 0 (8.8)

2. Strain-displacement equations on the enhanced modes

ε̃ = 0 (8.9)

3. Constitutive equations

D (∇(s)u + ε̃ − ε0) − σ = 0 (8.10)

In addition the boundary conditions for Γu and Γt are obtained. We note (8.9) implies
that, at the solution, the enhanced strains must vanish. Substitution of this result into
the remaining equations yields the appropriate displacement equations of equilibrium
and constitutive equation for linear elasticity, from 8.8 and 8.10, respectively. While
the enhanced strains vanish pointwise at a solution, in an approximate scheme based
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upon the enhanced strain method this is not the case. The enhanced strains will only
vanish in some integral sense over each element, just as the balance of momentum and
constitutive equations are approximated by finite element solutions.

In the enhanced strain principle, displacements appear up to first derivatives, while
the stresses and enhanced strains appear without any derivatives. Accordingly, the
continuity conditions we may use in finite element approximations again are C0 for the
displacements and C−1 for the stresses and enhanced strains. Appropriate interpola-
tions for displacements and stresses are the same as given previously for each element,
and are thus

u(ξ) = NI(ξ) uI(t) (8.11)

and
σ(ξ) = φα(ξ)σα(t) (8.12)

respectively. The choice of appropriate approximating functions φα will be affected by
the strain approximation, as will be shown below. From (8.2), the strain approxima-
tions are now given by

ε(u, ε̃) = ∇(s)u + ε̃(ξ) (8.13)

where the approximations for the enhanced strains are assumed as

ε̃(ξ) = ψα(ξ) ε̃α(t) (8.14)

It should be noted that different interpolations are introduced for the stress and the
enhanced strain terms.

Using the interpolations described above, the Hu-Washizu variational theorem may be
approximated by summing the integrals over each element. Accordingly,

Π(u,σ, ε) = Πh(u,σ, ε) ≈
∑
e

Πe(u,σ, ε) (8.15)

The variational expression in each element becomes

Πe(u,σ, ε̃) =
1

2

∫
Ωe

(∇(s)u + ε̃)T D (∇(s)u + ε̃) dΩ

−
∫

Ωe

(∇(s)u + ε̃)T D ε0 dΩ −
∫

Ωe

σT ε̃ dΩ (8.16)

Substituting the approximations for displacements, stresses, and enhanced strains and
replacing with

uIη = uI + ηUI (8.17)

σαη = σα + η Sα (8.18)

and
ε̃αη = ε̃α + η Ẽα (8.19)
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gives the first variation in each element as

dΠe

dη
=
[

(UI)T , (Ẽα)T , (Sα)T
]KIJ Γ̃βI 0

Γ̃
T

αJ H̃αβ Qαβ

0 QT
βα 0

 uJ

ε̃β

σβ

−
P0

I

π̃0
α

0

 (8.20)

where

KIJ =

∫
Ωe

BT
I D BJ dΩ (8.21)

Γ̃αJ =

∫
Ωe

ψT
α D BJ dΩ (8.22)

H̃αβ =

∫
Ωe

ψT
α Dψβ dΩ (8.23)

Qαβ =

∫
Ωe

φTα ψβ dΩ (8.24)

P0
I =

∫
Ωe

BT
I D ε0 dΩ (8.25)

π̃0
α =

∫
Ωe

ψT
α D ε0 dΩ (8.26)

The discrete Euler equation generated by the third equation of (8.20) is given in each
element by

Qαβ ε
β = 0 (8.27)

There are at least three possible ways this may be used:

1. The εβ are zero, which is not a useful result.

2. The interpolations for φα are orthogonal to the interpolations ψβ, which means
that

Qαβ = 0 (8.28)

which is the solution to be followed here. This is not perfect since we will not
obtain a method to compute the σβ directly from the variational formulation.

3. A combination of options (a) and (b).

For a formulation which satisfies (8.28), the variational equations in each element
reduce to

dΠe

dη
=
[

(UI)T , (Ẽα)T
]([KIJ Γ̃βI

Γ̃
T

αJ H̃αβ

] [
uJ

ε̃β

]
−
[
P0
I

π̃0
α

])
(8.29)



CHAPTER 8. ENHANCED STRAIN MIXED METHOD 66

Since the interpolations for the enhanced strains are assumed for each element inde-
pendently, the second of (8.29) may be solved at the element level giving

ε̃β = (H̃αβ)−1
[
π̃0
α − Γ̃αJ uJ

]
(8.30)

which may be substituted into the first equation to give

dΠe

dη
= (UI)T K̃IJ uJ − P̃0

I (8.31)

where
K̃IJ = KIJ − Γ̃

T

βI (H̃αβ)−1 Γ̃αJ (8.32)

and
P̃0
I = P0

I − Γ̃
T

βI (H̃αβ)−1 π̃0
α (8.33)

8.2 Stresses in the Enhanced Method

Since the stresses based upon the mixed approximation are no longer available an
alternative is needed for computations. Simo and Rifai suggest using a least square
projection technique to obtain the stresses; however, the stresses which are directly
utilized in the variational equation (8.7) may be deduced as

σ̃ = D (∇(s)u + ε̃ − ε0) (8.34)

In subsequent development we shall use these stresses for all calculations of arrays, as
well as, for outputs and stress projections to nodes. Thus, the variation in each element
may be written

dΠe

dη

∣∣∣∣
η=0

=

∫
Ωe

(∇(s)U)T σ̃ dΩ +

∫
Ωe

ẼT σ̃ dΩ (8.35)

It is noted that the orthogonality condition∫
Ωe

ST ε̃ dΩ = 0 (8.36)

has been incorporated in the above variation.

With the above description, the residual in each element becomes:

RI = FI −
∫

Ωe

BT
I σ̃ dΩ (8.37)
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for the contribution in the element to the global residual. Similarly, the residual for
the enhanced modes is computed from

R̃α = −
∫

Ωe

ψT
α σ̃ dΩ (8.38)

Note that the residual for the enhanced modes will vanish at a solution since it belongs
to a single element.

8.3 Construction of Enhanced Modes

The construction of the enhanced modes depends crucially on the orthogonality require-
ment being satisfied for each element. Based upon the study of the shape functions
using the alternative representation we recall that the gradient of the displacement
involves a constant part and a part which depends only on the determinant of the jaco-
bian matrix, j(ξ), the constant part of the jacobian matrix, J0, and gradients of local
coordinates, ξ. Accordingly, it is useful to express the enhanced strains in a similar
form. Using tensor notation we introduce the representations

ε̃ =
j0

j(ξ)
J−T0 Ẽ(ξ) J−1

0 (8.39)

which represents a transformation of the local enhanced strains, Ẽ, expressed on the
bi-unit square to the global strains, ε̃, using the transformation defined at the element
center. The weighting by the jacobian determinant terms is motivated by the gradient
of the shape functions. Similarly, a transformation of the local stresses, Σ, on the
bi-unit square element to the global stresses, σ, is given by

σ = J0 Σ(ξ) JT0 (8.40)

These transformations have the property that

tr(σ ε̃) =
j0

j(ξ)
tr(Σ Ẽ) (8.41)

The transformations may also be written in matrix form as

ε̃ =
j0
j(ξ)

F−1
0 Ẽ(ξ) (8.42)

σ =
j0

j(ξ)
FT

0 Σ(ξ) (8.43)

where for 2-dimensional problems

ẼT =
[
Ẽ11 Ẽ22 Ẽ33 2 Ẽ12

]
(8.44)
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ΣT =
[
Σ11 Σ22 Σ33 Σ12

]
(8.45)

and ε̃ and σ have similar ordering. The matrix F0 is given by

F0 =


(J11

0 )2 J21
0 J

12
0 0 2 J11

0 J
12
0

J12
0 J

21
0 (J22

0 )2 0 2 J21
0 J

22
0

0 0 1 0
J11

0 J
21
0 J12

0 J
22
0 0 J11

0 J
22
0 + J12

0 J
21
0

 (8.46)

In matrix form (8.41) may be written as

σT ε̃ =
j0

j(ξ)
ΣT Ẽ (8.47)

The integral over the element becomes∫
Ωe

σT ε̃ dΩ = j0

∫
2

ΣT Ẽ d2 = 0 (8.48)

Thus, the satisfaction of the orthogonality condition may be accomplished by con-
structing the interpolations in the natural coordinate system and transforming to the
global frame using (8.42) and (8.43). A number of alternatives are discussed in the
paper by Simo and Rifai [17]. Here we consider the simplest form, which indeed is
identical to the modified incompatible mode formulation [21]. It should be noted how-
ever, that no ad-hoc assumptions are required in the enhanced formulation, contrary
to what is necessary when using incompatible modes.

For the simplest form, the interpolations

Σ =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1




Σ1

Σ2

Σ3

Σ4

 (8.49)

for the stress and

Ẽ =


ξ1 0 0 0
0 ξ2 0 0
0 0 0 0
0 0 ξ1 ξ2



E1

E2

E3

E4

 (8.50)

for the enhanced strains are used. The integrals of natural coordinates over the bi-linear
(2-dimensional) element obey the following properties∫

2

ξpi d2 =

{
0 if p odd

4
p+1

if p even
(8.51)

Thus, the interpolations given by Eqs. 8.49 and Eqs. 8.50 contain only linear polyno-
mials in ξ and, thus, satisfy the orthogonality condition (8.48). These interpolations
have been incorporated into the element routine elmt04 which has been developed for
a linear elastic-viscoelastic material, as well as, for non-linear materials.



CHAPTER 8. ENHANCED STRAIN MIXED METHOD 69

8.4 Non-Linear Elasticity

For a non-linear, hyperelastic material the stresses are computed from a strain energy
density function, W (ε), through

σ =
∂W

∂ε
(8.52)

The partial derivative is understood in terms of components, where

σij =
∂W

∂εij
(8.53)

We note that for the linear material model discussed previously that

W (ε) =
1

2
εT D ε − εT D ε0 (8.54)

For the enhanced formulation the computation of stresses is given by

σ̃ =
∂W

∂ε

∣∣∣∣
ε = ∇(s)u + ε̃

(8.55)

In subsequent development we shall use these stresses for all calculations of arrays, as
well as, for outputs and stress projections to nodes. Thus, for the enhanced formulation
the variation in each element may be written as (see Eqs. 8.35 to 8.38)

dΠe

dη
=

∫
Ωe

(∇(s)U)T σ̃ dΩ +

∫
Ωe

ẼT σ̃ dΩ (8.56)

In a manner identical to the linear elastic material, the residual in each element be-
comes:

RI = FI −
∫

Ωe

BT
I σ̃ dΩ (8.57)

Similarly, the residual for the enhanced modes is computed from

R̃α = −
∫

Ωe

ψT
α σ̃ dΩ = 0 (8.58)

We note above that at a solution the residual, R̃α, should vanish independently in each
element.

8.5 Solution Strategy: Newton’s Method

The solution to a non-linear problem is commonly computed using a sequence of linear
approximations. A popular scheme is Newton’s method, which may be summarized as:
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1. Given the set of equations
f(x) = 0 (8.59)

where x are the dependent variables.

2. Construct the linear part of f about a current point x(i) as

f (i+1) ≈ f (i) +
∂f

∂x

∣∣∣∣
x=x(i)

dx(i+1) = 0 (8.60)

where dx(i+1) is an increment of x.

3. Solve the linear problem

dx(i+1) = − (F(i))−1 f (i) ; F(i) =
∂f

∂x

∣∣∣∣
x=x(i)

(8.61)

and update the solution as

x(i+1) = x(i) + dx(i+1) (8.62)

In the above, F(i), is the Jacobian or tangent matrix for the equations.

4. Repeat steps b.) and c.) until the solution converges to within a tolerance, tol.
Convergence may be assessed from

| dx(i+1) | < tol | x(i+1) | (8.63)

where | x | is the length of the vector, x.

Using Newton’s method on the set of equations defined by (8.57) and (8.58) above
gives the problem[

R
(i+1)
I

R̃
(i+1)
α

]
≈

[
R

(i)
I

R̃
(i)
α

]
−

[
K

(i)
IJ Γ̃

(i)

βI

Γ̃
(i)

αJT H̃
(i)
αβ

] [
duJ(i+1)

dε̃β(i+1)

]
=

[
R̂

(i+1)
I

0

]
(8.64)

In the above, the terms in the Jacobian are defined as

K
(i)
IJ = − ∂RI

∂uJ

∣∣∣∣(i) (8.65)

which expands to

K
(i)
IJ =

∫
Ωe

BI
∂σ̃

∂ε

∣∣∣∣(i) ∂ε

∂uJ
dΩ =

∫
Ωe

BI D̃
(i)
t BJ dΩ (8.66)
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where

D̃
(i)
t =

∂σ̃

∂ε

∣∣∣∣(i) (8.67)

define the tangent moduli for the material. For the non-linear elastic material

D̃
(i)
t =

∂2W

∂ε ∂ε

∣∣∣∣(i) (8.68)

Similarly,

Γ̃
(i)

αJ =

∫
Ωe

ψT
α D̃

(i)
t BJ dΩ (8.69)

and

H̃
(i)
αβ =

∫
Ωe

ψT
α D̃

(i)
t ψβ dΩ (8.70)

Since the second equation in (8.64) is complete at the element level, we may perform
a partial solution by static condensation. Accordingly,

dε̃β(i+1) = (H̃
(i)
αβ)−1 [R̃(i)

α − Γ̃
(i)

αJ du
J(i+1)] (8.71)

which may be substituted into the first equation to give

R̂
(i+1)
I = R̃

(i)
I − K̃

(i)
IJ du

J(i+1) (8.72)

where
R̃

(i)
I = R

(i)
I − Γ̃

(i)

βIT (H̃
(i)
αβ)−1 R̃(i)

α (8.73)

and
K̃

(i)
IJ = K

(i)
IJ − Γ̃

(i)T

βI (H̃
(i)
αβ)−1 Γ̃

(i)

αJ (8.74)

The reduced first equations may be assembled into the global equations. Thus after
adding any nodal forces, FI , the assembled equations become∑

e

K̃
(i)
IJ du

J(i+1) =
∑
e

R̃
(i)
I + FI (8.75)

which may be solved for the incremental nodal displacements, duJ(i+1). After the solve,
the new nodal displacements are updated

uJ(i+1) = uJ(i) + duJ(i+1) (8.76)

The incremental displacements also may be substituted back into (8.71) to compute
the increments to the enhanced modes; these may then be used for the update

ε̃β(i+1) = ε̃β(i) + dε̃β(i+1) (8.77)
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It should be noted that these last steps may not be performed until after the element
arrays are assembled and the resulting global problem is solved for the incremental
nodal displacements. Consequently, for this algorithm, it is necessary to save the
arrays used in (8.71) for the later update of the enhanced modes. In the enhanced
element for 2-dimensional plane strain applications in FEAP, the arrays are moved
into history arrays using a pmove routine. This requires additional storage for the
enhanced formulation with respect to that needed for a displacement or a mixed B-
bar type of formulation. It is possible to modify the above algorithm such that the
additional storage is reduced to saving only the current values of the enhanced mode
parameters, ε̃β(i).

The alternate algorithm is given by linearizing the residual, R̃α, with respect to ε̃β only.
Accordingly, with uJ(i) known we enter each element calculation with the enhanced
strain parameters at the values ε̃β(i−1) and perform the following steps.

1. For k = 0 set
ε̃β(i,k) = ε̃β(i−1) (8.78)

where a single superscript i denotes the value of ε̃β computed in the last global
iteration.

2. Compute the linear part of R̃α as

R̃α(uJ(i), ε̃β(i,k)) − H̃
(i,k)
αβ dε̃β(i,k+1) = 0 (8.79)

where now

H̃
(i,k)
αβ =

∫
Ωe

ψT
α D̃

(i,k)
t ψβ dΩ (8.80)

with

D̃
(i,k)
t =

∂σ̃

∂ε

∣∣∣∣
∇(s)u(i) + ε̃(i,k)

(8.81)

3. Solve for the increment

dε̃β(i,k+1) = (H̃
(i,k)
αβ )−1 R̃(i,k)

α (8.82)

4. Update the solution
ε̃β(i,k+1) = ε̃β(i,k) + dε̃β(i,k+1) (8.83)

5. Set k ← k + 1 and repeat Steps 2. to 4. until convergence achieved (or a set
number of k-steps is completed).

6. Set
ε̃β(i) = ε̃β(i,k+1) (8.84)

and save for the next global iteration, as well as use for subsequent steps for the
global i-iterations or to compute stresses.
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Vector Definition Description
uJ(i) Current solution value

at each node, J.
∆uJ(i) = uJ(i)− uJ(tn) Difference between current

and previous solution
duJ(i) = uJ(i)− uJ(i− 1) Increment from last iteration

Table 8.1: Element Local Arrays

Array Description Problems
ul(ndf,nen,1) local uJ(i) All
ul(ndf,nen,2) local ∆uJ(i) All
ul(ndf,nen,3) local duJ(i) All
ul(ndf,nen,4) local u̇J(i) Transient
ul(ndf,nen,5) local u̇J(i) Transient
ul(ndf,nen,6) local u̇J(i− 1) Transient
ul(ndf,nen,7) used for b.c. on uJ(i) All1

Table 8.2: Element Local Arrays

The only information to be stored is the ε̃β(i). The algorithm requires repeated com-
putation of R

(i,k)
α and H

(i,k)
αβ ; however, using only 2 or 3 iterations generally suffices

(even though convergence may not be achieved for the first few values of the i-global
iterations). Once the k-iteration is completed, linearization with respect to both uJ

and ε̃B is performed, leading to (8.72) to (8.75) for the global steps. If the k itera-

tion is converged, the R
(i)
α is zero in (8.72) to (8.75) thus simplifying slightly the steps

involved.

While the above process has been illustrated for the non-linear elastic material, it may
be directly extended to any material for which we can iteratively compute the stresses,
σ̃(i), and the tangent moduli, D̃

(i)
t . In subsequent presentations we shall discuss the

construction of these steps for linear viscoelastic materials, elasto-plastic materials,
and a class of viscoplastic materials.

In FEAP, the uJ(i) nodal displacement vector and the ∆uJ(i) and duJ(i) nodal in-
cremental vectors are retained in global arrays. The global arrays are passed to each
element in a local array, ul(ndf,nen,i). The definitions of the entries in the local
array are given in Table 8.1.

The array ul contains information for the current element according to the definitions
in Table 8.2.



Chapter 9

Linear Viscoelasticity

9.1 Isotropic Model

The representation of a constitutive equation for linear viscoelasticity may be in the
form of either a differential equation or an integral equation form. In the discussion
to be presented here we assume the material is linear and isotropic. Accordingly, in
matrix form the stress and strain may be split as

σ = s + m p (9.1)

and

ε = e +
1

3
m θ (9.2)

where σ is the Cauchy stress, s is the stress deviator, and p is the mean (pressure)
stress defined in matrix form as

p =
1

3
mT σ (9.3)

ε is strain, e is the strain deviator, and θ is the volume change defined in matrix form
as

θ = mT ε (9.4)

In the presentation given here we assume that the pressure-volume parts of the behavior
are governed by a linear elastic model

p = K θ (9.5)

where K is the bulk elastic modulus defined in terms of Young’s modulus and Poisson’s
ratio as

K =
E

3 (1− 2 ν)
(9.6)
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The deviatoric parts are assumed to satisfy a linear viscoelastic model.

Linear viscoelastic behavior may be stated in the form of differential equation models
or in the form of integral equations. In the differential equation model the constitutive
equation may be written as

P (s) = 2GQ(e) (9.7)

where P and Q are differential operators expressed as

P = pm
∂m

∂tm
+ pm−1

∂m−1

∂tm−1
+ · · · + p0 (9.8)

Q = qm
∂m

∂tm
+ qm−1

∂m−1

∂tm−1
+ · · · + q0 (9.9)

and

G =
E

2 (1 + ν)
(9.10)

is identical to the elastic shear modulus. Alternatively, the operator may be written as

s = 2G (µ0e +
N∑
i=1

µi q
i) (9.11)

q̇i +
1

λi
qi = ė (9.12)

This form of the representation is equivalent to a generalized Maxwell model (a set of
Maxwell models in parallel). The set of first order differential equations may be inte-
grated for specified strains, e. The integral for each term is given by the homogeneous
differential equation solution, qih,

qih(t) = C exp
−t
λi

(9.13)

and variation of parameters on C to give

qi(t) =

∫ t

−∞
exp−t− τ

λ1

ė(τ) dτ (9.14)

An advantage to the differential equation form is that it may be easily extended to
include aging effects by making the parameters time dependent.

An alternative to the linear viscoelastic model in differential form is to use an integral
equation form. The integral form equivalent to the above is expressed in terms of the
relaxation modulus function. The relaxation modulus function is defined in terms of an
idealized experiment in which, at time labeled zero (t = 0), a specimen is subjected to
a constant strain, e0, and the stress response, s(t), is measured. For a linear material
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a unique relation is obtained which is independent of the magnitude of the applied
strain. This relation may be written as

s(t) = 2G(t) e0 (9.15)

where G(t) is defined as the shear relaxation modulus function. Using linearity and
superposition for an arbitrary state of strain yields an integral equation specified as

s(t) =

∫ t

−∞
G(t− τ) ė(τ) dτ (9.16)

It is noted that the above form is a generalization of the Maxwell material. Indeed the
integral equation form may be defined as a generalized Maxwell model by assuming
the shear relaxation modulus function in the Prony series form

G(t) = G0 +
N∑
i=1

Gi exp
−t
λi

(9.17)

or the alternate form

G(t) = G (µ0 +
N∑
i=1

µi exp
−t
λi

) (9.18)

where

µ0 +
N∑
i=1

µi = 1 (9.19)

With this form the integral equation form is identical to the differential equation model
for the generalized Maxwell material. In the subsequent discussion we will consider the
generalized Maxwell material and let N be 1 (i.e., the standard linear solid). The
addition of more terms may be easily accommodated based upon the one term repre-
sentation. Accordingly,

G(t) = G (µ0 + µ1 exp
−t
λ1

) (9.20)

where
µ0 + µ1 = 1 (9.21)

In applications involving a linear viscoelastic model, it is usually assumed that the
material is undisturbed until a time identified as zero. At time zero a strain may be
suddenly applied and then varied over subsequent time. The integral representation
for the the model may be simplified by dividing the integral into∫ t

−∞
(·) dτ =

∫ 0−

−∞
(·) dτ +

∫ 0+

0−
(·) dτ +

∫ t

0+
(·) dτ (9.22)
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The first term is zero, the second term includes a jump term associated with e0 at
time zero, and the last term covers the subsequent history of strain. The result of this
separation when applied to (9.16) gives

s(t) = 2G(t) e0 + 2

∫ t

0

G(t− τ) ė(τ) dτ (9.23)

where subsequently the 0 limit on the integral is understood as 0+.

Substitution of (9.20) into (9.23) gives

s(t) = 2G [µ0 e(t) + µ1 exp
−t
λ1

(e0 +

∫ t

0

exp
t

λ1

ė(τ) dτ)] (9.24)

It remains to evaluate the integral. Accordingly, we divide the integral as∫ t

0

(·) dτ =

∫ tn

0

(·) dτ +

∫ t

tn

(·) dτ (9.25)

If we define the integral as

i1(t) =

∫ t

0

exp
τ

λ1

ė(τ) dτ (9.26)

the above separation gives

i1(t) = i1(tn) +

∫ t

tn

exp
τ

λ1

ė(τ) dτ (9.27)

Including the negative exponential multiplier term gives

h1 = exp
−t
λ1

i1 (9.28)

and then

h1(t) = exp
−∆t

λ1

h1
n + ∆h (9.29)

where

∆h = exp
−t
λ1

∫ t

tn

exp
τ

λ1

ė(τ) dτ (9.30)

The strain rate is now approximated as constant over each time increment tn to t, thus

ė(τ) ≈ e(t)− en
∆t

; tn ≤ τ ≤ t (9.31)

where en denotes the value of the strain at time tn and ∆t denotes the time increment
t − tn. A numerical approximation to ∆h may be employed and one proposal uses a
midpoint (one-point) approximation for the integral as [8]

∆h = exp
−∆t

2λ1

(e− en) (9.32)
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The recursion then becomes∫ t

tn

exp
τ

λ1

dτ ≈ ∆t exp
tn+ 1

2

λ1

(9.33)

where tn+ 1
2

denotes the time 1
2
(tn + t). Thus, the recurrsion is now given in the form

h1(t) = exp
−t
λ1

i1(t) = exp
−∆t

λ1

[h1
n + exp

∆t

2λ1

(e − en)] (9.34)

and simplifies to

h1(t) = exp
−∆t

2λ1

[exp
−∆t

2λ1

h1
n + (e − en)] (9.35)

This form requires only one evaluation of an exponential term. Furthermore, a zero
value of the time step produces a correct answer, as well as, a very large value of the
time step producing a zero value. Thus, the form is doubly asymptotically accurate.
The use of finite difference approximations on the differential equation form directly
does not produce this property.

While the above form is easy to evaluate it has problems when the size of the time
step is changed. Thus, a more stable form is used in FEAP where the integral over the
time step is evaluated in closed form [24]. The result gives

∆h =
λ1

∆t

(
1 − exp

−∆t

λ1

)
(e− en) (9.36)

This approximation produces a singular ratio for zero time steps; however, the limit
value is well behaved at a unit value. For very small time steps a series expansion may
be used to yield accurate values. This form gives a recursion which is stable for small
and large time steps and gives smooth transitions under variable time steps. It may
also be extended for use with thermorheologically simple materials.

The constitutive equation now has the simple form

s(t) = 2G [µ0 e(t) + µ1 h1(t)] (9.37)

The inclusion of more terms in the series reduces to evaluation of additional hi(t)
integral recursions. The required storage is increased by a need to preserve the hi for
each quadrature point in the problem and each term in the series.

The implementation of the viscoelastic model into a Newton solution process requires
the computation of the tangent tensor. Accordingly, we need to compute

∂s

∂ε
=

∂s

∂e

∂e

∂ε
=

∂s

∂e
Idev (9.38)
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where Idev is the deviatoric operator identified previously. The partial derivative with
respect to the deviatoric stress is given by

∂s

∂e
= 2G [µ0 I + µ1

∂h1

∂e
] (9.39)

If we let
∆h1 = ∆h1(∆t) (e − en) (9.40)

the derivative of the last term in (9.39) becomes

∂h1

∂e
= ∆h1(∆t), I (9.41)

Thus, the tangent tensor is given by

∂s

∂ε
= 2G [µ0 + µ1 ∆h1(∆t)] Idev (9.42)

The only modification from a linear elastic material is the substitution of the factor

Gvisc = G [µ0 + µ1 ∆h1(∆t)] (9.43)

for the elastic shear modulus. Again we note that for zero ∆t the full elastic modulus
is recovered, whereas for very large increments the equilibrium modulus µG0 is used.
The above formulation is incorporated into the subroutine viscoe. Note the simplicity
of the additional coding needed to include the linear viscoelastic formulation. Since
the material is linear, use of the consistently derived tangent modulus terms leads to
convergence in one iteration (the second iteration produces a zero residual).



Chapter 10

Plasticity Type Formulations

10.1 Plasticity Constitutive Equations

The constitutive equations for a material which behaves according to a plasticity type
formulation for deformation states which exceed the elastic limit may be expressed by
assuming that the strains are decomposed according to

ε = εe + εp (10.1)

where εe are the elastic strains and εp are the inelastic strains. If the material is non-
linear hyper-elastic we may deduce the stress from the expression for the elastic strain
energy as

σ =
∂W

∂ε

∣∣∣∣
εe

(10.2)

where W is the strain energy density and is expressed as a function of the elastic
strains and σ and εe are stress and strain energy conjugates. For a linear hyper-elastic
material the stress to elastic strain relation is given by

σ = D εe = D (ε − εp − ε0) (10.3)

In the following discussion we limit our comments to linear elastic materials and also
set ε0 zero. The inelastic component of the strain rate is related to the gradient of a
loading function with respect to stress. Accordingly,

ε̇p = γ̇
∂f

∂σ
(10.4)

where f is a loading function and γ̇ is a scalar rate term called the plastic consistency
parameter. The plastic consistency parameter, γ̇, is zero for elastic behavior and pos-
itive for plastic behavior. A back stress is defined as α which is related to the plastic
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strain rate through

α̇ =
2

3
Hkin ε̇

p =
2

3
Hkin γ̇

∂f

∂σ
(10.5)

where Hkin is a kinematic hardening modulus. The yield surface is defined in an as-
sociative manner, using the same function as the loading function, and is expressed
as

f(σ,α, ēp) = F (Σ) − Y (ēp) (10.6)

where the stress and back stress appear in the form

Σ = σ − α (10.7)

and
Y (ēp) = Y0 + Hiso ē

p (10.8)

is a function which measures the size of the current yield surface. Commonly, Y0 is
related to σy, the yield stress in uniaxial tension. The isotropic hardening behavior of
the material is included in Y through an effective or accumulated plastic strain defined
by

ēp =

∫ t

0

(
2

3
ε̇p · ε̇p

) 1
2

dτ (10.9)

In (10.8) Hiso is an isotropic hardening modulus. In the present study both the isotropic
and the kinematic hardening moduli will be assumed as constants. Using the definition
of the plastic strain rate the effective plastic strain may also be written as

ēp =

∫ t

0

γ̇

(
2

3

∂f

∂σ
· ∂f
∂σ

) 1
2

dt (10.10)

thus it is evident that ēp is dependent on the integral of γ̇ and the particular load-
ing/yield function used to describe the material.

Generally, the model is completed by describing a scalar function, g, which describes
the limit behavior of the model. Different limit equations may be written for rate
independent plasticity, rate dependent plasticity, and generalized plasticity models.
The simplest relation is for classical, associative, rate independent plasticity where

g = f(σ,α, ēp) ≤ 0 (10.11)

is used. Later alternative forms will be introduced to represent other types of material
behavior.
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10.2 Solution Algorithm for the Constitutive Equa-

tions

The solution of the above set of equations may be effected numerically using a variety
of algorithms. A very effective method to integrate plasticity equations is the operator
split method with a return map concept[18, 19, 3, 4] the algorithm may be extended to
include a variety of modeling concepts for the limit behavior; however, for the present
we restrict our attention to plasticity as defined by (10.11) above. Accordingly, a
discrete solution at time tn is defined in terms of the state σn, αn, εpn, and ēpn. The
solution is then advanced to time tn+1 by specifying the strain, εn+1.

To initiate the solution at tn+1 a trial state is computed assuming the step is entirely
elastic. Recall that a step is elastic when γ̇ is zero. This implies that there will be no
change to εp, α, or ēp during an elastic increment. The step is initiated by taking the
trial values for plastic quantities

εpTRn+1 = εpn (10.12)

αTRn+1 = αn (10.13)

ēpTRn+1 = ēpn (10.14)

and
γ̇TRn+1 = 0 (10.15)

Thus for linear elasticity
σTRn+1 = D (εn+1 − εpTRn+1) (10.16)

The trial stress given by (10.16) is checked in (10.6) and (10.11) to determine if the
step is elastic or whether inelastic terms should be active. If the state at tn+1 is elastic
the stresses (as well as other state variables) are set equal to the trial value; otherwise,
a correction is required to include the inelastic terms.

For an inelastic step the stresses must satisfy (1.2) for the time tn+1 which requires
the rate equations for εp and α to be integrated over the time increment. Accordingly,
integrating non-linear terms using a backward Euler implicit method between tn and
tn+1, the plastic strain is given by

εpn+1 = εpn + λn+1
∂f

∂σ

∣∣∣∣
n+1

(10.17)

and the back stress by

αpn+1 = αpn + Ĥkin λn+1
∂f

∂σ

∣∣∣∣
n+1

(10.18)
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where Ĥkin is a constant kinematic hardening parameter and the integral of the con-
sistency parameter is given by

λn+1 = γn+1 − γn (10.19)

Similarly, evaluating (10.11) at tn+1 gives

gn+1 = fn+1 = 0 (10.20)

Finally, integration of (10.4) produces

ēpn+1 = ēpn + λn+1 (
3

2

∂f

∂σ
· ∂f
∂σ

)
1
2

∣∣∣∣
n+1

(10.21)

The set of equations Eqs. 10.3, 10.18 and 10.20 constitute a set of non-linear equations
in terms of the values of σn+1, αn+1 and λn+1 which must be solved for each stress point
and each time step of interest. A Newton method may be used to solve the equations.
To simplify the notation the subscripts on n+ 1 are omitted. The iteration counter is
shown as a superscript (j) and initial iterate values are taken as the trial stress and
zero λ(0). The iterative solution is continued until the norm the residuals are within
acceptable tolerance values (e.g., normally, half machine precision relative to the initial
iterate values are used since Newton’s method then guarantees that machine precision
is achieved if the next iteration is checked). Before proceeding with Newton’s method
we note that the following relations hold

∂f

∂σ
=

∂f

∂Σ

∂Σ

∂σ
=

∂f

∂Σ
(10.22)

and
∂f

∂α
=

∂f

∂Σ

∂Σ

∂α
= − ∂f

∂Σ
(10.23)

Thus, treating the equations (10.18) and (10.20) as residual equations, in the form

R(j)
σ = ε − εpn − D−1 σ(j) − λ

∂f

∂Σ
(10.24)

R(j)
α = αn + Ĥkinλ

∂f

∂Σ
− α(j) (10.25)

and
R

(j)
f = − f(σ(j),α(j), ēp(j)) (10.26)

we may linearize the equations to obtain (note the iteration counter j is omitted in the
coefficient array for simplicity) Ĉ −λ ∂2f

∂Σ2
∂
∂λ

(λ ∂f
∂Σ

)

−Ĥkinλ
∂2f
∂Σ2 (I + Ĥkinλ

∂2f
∂Σ2 ) −Ĥkin

∂
∂λ

(λ ∂f
∂Σ

)
∂f
∂Σ

T − ∂f
∂Σ

T −A


dσ(j+1)

dα(j+1)

dλ(j+1)

 =

R
(j)
σ

T
(j)
α

R
(j)
f

 (10.27)
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where

A =
∂Y

∂ēp
∂ēp

∂λ
(10.28)

and

Ĉ = D−1 + λ
∂2f

∂Σ2 (10.29)

The solutions to (10.27) are computed and added to obtain the next iterates. Accord-
ingly,

σ(j+1) = σ(j) + dσ(j+1) (10.30)

α(j+1) = α(j) + dα(j+1) (10.31)

and
λ(j+1) = λ(j) + dλ(j+1) (10.32)

define the next iterates. The solution is terminated whenever the norms of the residuals
are smaller than a selected small tolerance.

Once convergence is achieved for each stress point evaluation (i.e., to compute the stress
at each Gauss point for a given strain), the stresses may be used in the finite element
to compute each element residual. In addition it is necessary to compute the tangent
moduli, Dt, for use in the element stiffness matrix (if one is used) for the next iteration
on the momentum balance equation. That is we need to perform a new solution to
see if the strains we used to compute the stresses are correct. This is accomplished, as
before, by solving ∑

e

KIJ uJ = FI +
∑
e

RI (10.33)

where KIJ and RI are the element stiffness and residual, respectively. The computation
of the tangent moduli may be obtained by noting that the computation of the last stress
increment in the Newton solution of (10.27) may be written asdσ(j+1)

dα(j+1)

dλ(j+1)

 =

 Ĉ −λ ∂2f
∂Σ2

∂
∂λ

(λ ∂f
∂Σ

)

− Ĥkin λ
∂2f
∂Σ2 (I + Ĥkin λ

∂2f
∂Σ2 ) − Ĥkin

∂
∂λ

(λ ∂f
∂Σ

)
∂f
∂Σ

T − ∂f
∂Σ

T −A


−1 R

(j)
σ

T
(j)
α

R
(j)
f


(10.34)

At convergence for the given strain, ε, the residuals will vanish; however, if we now
consider a linearization with respect to strain only Rσ contributes to the change. The
linearization of the residuals with respect to an increment of strain yields

Rσ = dε ; Rα = 0 ; Rf = 0 (10.35)

Denoting the inverse matrix asD̂11 D̂12 D̂13

D̂21 D̂22 D̂23

D̂31 D̂32 D̂33

 =

 Ĉ −λ ∂2f
∂Σ2

∂
∂λ

(λ ∂f
∂Σ

)

−Ĥkinλ
∂f
∂Σ

(I + Ĥkinλ
∂2f
∂Σ2 ) −Ĥkin

∂
∂λ

(λ ∂f
∂Σ

)
∂f
∂Σ

T − ∂f
∂Σ

T −A


−1

(10.36)
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The final result for the linearization with respect to strain givesdσ(j+1)

dα(j+1)

dλ(j+1)

 =

D̂11 dε

D̂21 dε

D̂31 dε

 (10.37)

thus, the tangent moduli for the next momentum iteration is

Dt = D̂11 (10.38)

Except for giving the form of f this completes the specification of the general algorithm.
Multiple yield surfaces may be included by modifying (10.4) to

ε̇p =
K∑
k=1

γ̇k
∂fk
∂σ

(10.39)

with each part of the yield surface described by a separate function

gk = fk(σ,α, ē
p) ≤ 0 (10.40)

An active condition for each surface is denoted when γ̇k ≥ 0. Thus, usually only 1 or
2 of the surfaces are active at any time.

As constitutive equations become complex the specification of the parameters is more
difficult. A systematic procedure for determining the parameters from experimental
data is given by Ju, et. al.[14]. The method provides the best estimates for the param-
eters and their sensitivities to errors or inconsistencies in the data.

10.3 Isotropic plasticity: J2 Model

Here it is necessary to use all 9 components of tensors to ensure that proper values are
computed. Once any values are computed, they may be projected onto a 6 component
form. See Zienkiewicz et al. [27] or [28] for further details. As in previous developments,
the strain is again split into deviatoric, e, and volumetric (spherical), θ, parts and
expressed in matrix notation as

ε = e +
1

3
m θ (10.41)

where
θ = mT ε (10.42)

For our study on inelastic behavior, the decomposition into elastic and plastic parts
may now be expressed as

e = ee + ep (10.43)
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and
θ = θe + θp (10.44)

The stress also is split into the deviatoric, s, and pressure (spherical) parts as

σ = s + m p (10.45)

where

p =
1

3
mT σ (10.46)

With the above splits the isotropic linear elastic constitutive equations are given by

p = K (θ − θp) (10.47)

and
s = 2G (e − ep) (10.48)

In the developments below we restrict plasticity to the deviatoric part only. Thus θp

vanishes and the yield function can depend only on the deviatoric part of the stress.
For isotropic materials the yield and loading function may be expressed in terms of the
invariants of stress and back stress. The invariants of s are denoted as J1, J2, and J3

and given by

J1 = mT s = 0 (10.49)

J2 =
1

2
sT s (10.50)

and
J3 = det (s) (10.51)

The simplest formulation is where the function depends only on J2. We write this
model using √

2 J2 = (sT s)
1
2 = ‖ s ‖ (10.52)

and including the back stress, the limit equation as

g = f(s,α, ēp) = ‖ s − α ‖ − Y (ēp) ≤ 0 (10.53)

where Y is the radius of the yield function which is related to the uniaxial yield stress,
σy, through

Y (ēp) =

√
2

3
(σy + Hiso ē

p) (10.54)

and, thus, includes the effects of linear isotropic hardening. The back stress adjusted
value Σ is given by

Σ = s − α (10.55)
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A simple calculation shows that

∂f

∂σ
=

∂f

∂s
Idev ;

∂f

∂s
=

∂f

∂Σ

∂Σ

∂s
=

∂f

∂Σ
;

∂f

∂α
=

∂f

∂Σ

∂Σ

∂α
= − ∂f

∂Σ
(10.56)

(where we recall that Idev = I − 1
3
m mT ), and

∂f

∂Σ
=

Σ

‖ Σ ‖
= n =

∂f

∂σ
(10.57)

Thus, the evolution of the back stress satisfies

α̇ =
2

3
Hkinγ̇

∂f

∂σ
=

2

3
Hkinγ̇ n (10.58)

Noting that at the initial state α is zero, we can conclude that the back stress evolves
such that it is a purely deviatoric quantity. thus,

mT α = 0 (10.59)

With this fact we then have the following important properties

mT Σ = 0 ; mT n = 0 ; nT n = 1 (10.60)

Based upon the above all aspects of the J2 plasticity model are restricted to deviatoric
components only. Thus, our model is completed by giving the evolution equations for
plastic strain and effective plastic strain in the form

ėp = γ̇ n (10.61)

ēp =

∫ t

0

√
2

3
γ̇ dτ (10.62)

The discrete form of the isotropic J2 model is given by the equations

pn+1 = K θn+1 (10.63)

sn+1 = 2G (en+1 − epn+1) (10.64)

epn+1 = epn + λn+1 nn+1 (10.65)

αn+1 = αn +
2

3
Hkinλn+1 nn+1 (10.66)

ēpn+1 = ēpn +

√
2

3
λn+1 (10.67)

gn+1 = ‖ Σn+1 ‖ − Yn+1 ≤ 0 (10.68)

Σn+1 = sn+1 − αn+1 (10.69)
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and

Yn+1 =

√
2

3
(σy + Hiso ē

p
n+1) = Yn +

2

3
Hiso λn+1 (10.70)

The solution of the J2 model is straight forward and may be accomplished by solving
only a scalar equation in λn+1. The solution is performed using a trial state based
upon the assumption that λTRn+1 is zero. Accordingly,

epTRn+1 = epn ; αTRn+1 = αn ; ēpTRn+1 = ēpn (10.71)

This yields the trial deviator stresses

sTRn+1 = 2G (en+1 − epTRn+1) = 2G (en+1 − epn) (10.72)

which may be used to check the limit equation, gn+1. If the limit equation is satisfied
then the trial values define the solution at tn+1. If the trial values violate the limit
equation, it is necessary to perform the second part of the algorithm. The second
part of the algorithm solves the discrete rate equations using the trial values as initial
conditions. Accordingly, using Eqs. 10.65, 10.71 and 10.72 in (10.64) gives

sn+1 = sTRn+1 − 2Gλn+1 nn+1 (10.73)

Next subtracting (10.66) from (10.73) gives

Σn+1 = sn+1 − αn+1 = sTRn+1 − αn − 2 (G +
1

3
Hkin)λn+1 nn+1 (10.74)

Noting that Σn+1 = ‖ Σn+1 ‖ nn+1 (10.74) gives also that sTRn+1 − αn is in the
direction nn+1, and may be written as the scalar equation[

‖ Σn+1 ‖ − ‖ ΣTR
n+1 ‖ + 2 (G +

1

3
Hkin)λn+1

]
nn+1 = 0 (10.75)

that is, the coefficient must vanish to obtain a solution. In the above

ΣTR
n+1 = sTRn+1 − αn (10.76)

Combining (10.75) with (10.68) and (10.70) yields the scalar equation,

‖ ΣTR ‖ − Yn = 2 [G +
1

3
(Hiso + Hkin)]λn+1 (10.77)

Once λn+1 is known it may be combined with the result

nn+1 = nTRn+1 =
ΣTR
n+1

‖ ΣTR
n+1 ‖

(10.78)
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to give the stress as
sn+1 = sTRn+1 − 2Gλn+1 nn+1 (10.79)

as well as the plastic strain and the back stress. In practice λn+1 is reduced slightly to
that sn+1 is always slightly outside the limit yield condition. Accordingly, the solution
to (10.78) is perturbed as

λn+1 =
‖ ΣTR

n+1 ‖ − Yn (1 + tol)

2 [G + 1
3

(Hiso + Hkin)]
(10.80)

where tol is a small value, say 10−8.

The solution of the problem, as shown above, does not require a linearization or an
iteration process. If non-linear isotropic hardening is included or alternative forms for
the limit equation are employed, the equation equivalent to (10.77) will be nonlinear
in λn+1 and a linearization and iteration process are required to obtain a solution.
Similarly, if non-linear kinematic hardening is introduced the reduction to a scalar
equation may also be complicated.

Once the converged value for λn+1 is known and the stress state determined, a check
on satisfaction of the momentum equation must be made. If the momentum equation
is not satisfied for the current time, tn+1, another iteration is necessary to improve
the estimate for the state of strain, εn+1. If a Newton type solution method is used it
is necessary to compute an appropriate tangent modulus matrix for each stress point
in the analysis. For the solution process developed here, this may be achieved by
selecting as primary dependent variables the stress, sn+1, the back stress, αn+1, and
the consistency parameter, λn+1. Writing appropriate residual equations as

Rs = e − epn −
1

2G
s − λn = 0 (10.81)

Rα = α − αn −
2

3
λHkin n = 0 (10.82)

and

Rf = Yn +
2

3
Hiso λ − ‖ Σ ‖ = 0 (10.83)

In the above we have deleted specific reference to the values at tn+1, to avoid added
complexity in the linearization performed below. It should be understood that λ de-
notes the value of the solution in the tn+1 step, i.e., previously given as λn+1, and etc.
for all the other variables. We note that for the current strain, e, the above equations
are satisfied; however, to proceed to the next iteration of the momentum equation we
consider a linearization of the above equations with respect to a change in the strain
also, which we denote by de. Accordingly, the linearization n becomes

∂n

∂Σ
=

1

‖ Σ ‖
(I − n nT ) =

1

‖ Σ ‖
N (10.84)
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Using this result, the linearization of Eqs. 10.81 to 10.83 yields the set of equations
1

2G
I + λ

‖Σ‖ N − λ
‖ΣTR‖ N n

− 2λHkin

3 ‖Σ‖ N I + 2λHkin

3 ‖Σ‖ N − 2
3
Hkin n

nT −nT − 2
3
Hiso


 dsdα
dλ

 =

de0
0

 (10.85)

The inverse to the coefficient matrix may be computed by first solving the first two
equation for ds and dα in terms of dλ and de, and then substituting the result into the
third equation to obtain a final expression for dλ in terms of de. This also permits the
substitution of alternative limit equations without changing the solution to the first
part. Accordingly, we consider[

1
2G

I
+ λ
‖Σ‖

N − λ
‖Σ‖ N

− 2λHkin

3 ‖ΣTR‖ N I + 2λHkin

3 ‖Σ‖ N

] [
ds
dα

]
=

[
de − n dλ
− 2

3
Hkin n dλ

]
(10.86)

The solution to this equation is1[
ds
dα

]
=

[
2G (I − BN) BN

2GC N I − C N

] [
de − n dλ
− 2

3
Hkin n dλ

]
(10.87)

where B and C are given by

B =
2Gλ

‖ Σ ‖D
=

2Gλ

‖ ΣTR ‖
; C =

2Hkin λ

3 ‖ Σ ‖ D
=

2Hkin λ

3 ‖ ΣTR ‖
(10.88)

and where we have noted that

D = 1 + 2 (G +
Hkin

3
)

λ

‖ Σ ‖
=
‖ ΣTR ‖
‖ Σ ‖

(10.89)

This result may be substituted into the third equation in (10.85) to obtain

2GnT de = 2 [G +
1

3
(Hiso + Hkin)] dλ (10.90)

Substituting this result back into the first of equation (10.87) yields the incremental
equation which yields the tangent modulus matrix for the algorithm. Thus, we obtain

ds = 2G [I − B (I − n nT ) − An nT ] de (10.91)

where

A =
G

G + 1
3

(Hiso + Hkin)
(10.92)

Finally, for the differential strains, dε, the tangent becomes

ds = 2G
[
Idev − B (Idev − n nT ) − An nT

]
dε (10.93)

1See Appendix E for a discussion on the inverse of this type of matrix.
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10.4 Isotropic viscoplasticity: J2 model

The previous section presented the formulation and solution algorithm for a J2 classical
plasticity model. In this section we show how such a formulation may be easily extended
to include rate effects in the inelastic behavior. The model selected for exposition is
classical viscoplasticity as introduced by Prager for one-dimension and extended to full
three-dimensional form by Perzyna[16].

For the viscoplastic model considered here, the only modification to the formulation
is the replacement of the limit equation for g. Indeed, other models representing the
problems of generalized plasticity and generalized viscoplasticity can also be developed
by such replacement. In viscoplasticity, the relationship for g becomes a constitutive
equation describing the evolution for the consistency parameter, γ̇. Accordingly, we
write

g = Φ [f(s,α, ēp)] − ζ γ̇ ≤ 0 (10.94)

where the yield condition, f , still is given by

f(s,α, ēp) = ‖ s − α ‖ − Y (ēp) (10.95)

with Y the radius of the yield function which is related to a uniaxial yield stress, σy,
through

Y (ēp) =

√
2

3
(σy + Hiso ē

p) (10.96)

and, thus, includes the effects of linear isotropic hardening. For viscoplasticity, Y and
σy relate to the inelastic behavior in the limit as γ̇ tends to zero (the rate independent
limit). For loading rates which are finite, the stress state may lie outside the yield
surface. The function Φ together with the parameter ζ determine the rate dependency
of the model. Perzyna considers alternatives for representing Φ; however, here we
restrict our attention to the simple case given by

Φ (f) =

(
f

Y (0)

)m
(10.97)

where m is a positive integer power. Other functional forms for Φ may be considered
without conceptual difficulty. All the other equations for the model remain as given in
Section 10.3.

For trial stress values for which the yield function defined by (10.95) exceeds zero, the
behavior is inelastic and the return map solution for the viscoplastic model is given
by Eqs. 10.63 to 10.67, 10.69 and 10.70. The formulation is completed by integration
of the constitutive equation (10.94) for the time interval tn to tn+1 (i.e., ∆t) using a
backward Euler evaluation of the integrals to obtain

∆tΦ [f (sn+1,αn+1, ē
p
n+1)] − ζ λn+1 = 0 (10.98)
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The discrete consistency parameter may be obtained by combining the scalar coefficient
from (10.75) with (10.98) to obtain a single nonlinear equation in λn+1. Accordingly,
we obtain

∆tΦ

[
‖ ΣTR ‖ − Yn − 2 (G + 1

3
(Hiso + Hkin))λn+1

Y0

]
− ζ λn+1 = 0 (10.99)

For the simple model used here for Φ, the above becomes

∆t

(
‖ ΣTR ‖ − Yn − 2 [G + 1

3
(Hiso + Hkin)]λn+1

Y0

)m

− ζ λn+1 = 0 (10.100)

In general, the above equation is nonlinear and must be solved numerically. For the
case where m = 1 the equation is linear and has the solution

λn+1 =
∆t (‖ ΣTR

n+1 ‖ − Yn (1 + tol))

ζ Y0 + 2 ∆t [G + 1
3

(Hiso + Hkin)]
(10.101)

Comparing (10.101) to (10.80) we can observe that the limit solution for ζ zero is
identical to the classical plasticity problem. The stress, back stress, plastic strain, and
effective plastic strain are computed using the same expressions as for the classical
plasticity model. For nonzero ζ, the presence of ∆t in (10.101) implies a rate depen-
dency, with results depending on time durations for applying and changing loads on
the body. The extension to higher powers of m may be constructed using a Newton
solution scheme to solve the non-linear scalar equation.



Chapter 11

Augmented Lagrangian
Formulations

11.1 Constraint Equations - Introduction

The solution of many problems requires imposition of constraints as part of the for-
mulation. For example, if it is desired to solve the incompressible equations for linear
elasticity it is necessary to impose the constraint

tr(ε) = mT ε = 0 (11.1)

Another type of constraint is to impose boundary conditions on a node, where we wish
to impose the condition for node I that

uI = ūI (11.2)

in which ū denotes a specified value. This type of constraint can be made more general
by letting the degrees-of-freedom be associated with a rotated local coordinate system
(e.g., a spherical coordinate frame) where now

u′I = TI uI = ū′I (11.3)

in which TI is an orthogonal rotation matrix which transforms the degrees-of-freedom
from the global Cartesian to the prime system. Many other conditions could be given;
however, the above suffice for the present. The inclusion of the constraints into the finite
element problem may be performed by several different approaches. For constraints
of the type (11.2) it is easy to directly eliminate the variables associated with uI , as
is done in FEAP. On the other hand the inclusion of (11.1) or (11.3) presents more
difficulty to implement. Thus, an alternative method is needed to implement general
types of constraints. A common approach is to use penalty methods; however, these
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are sensitive to the value of the penalty parameter selected. A better approach, which
is numerically superior, is to use an augmented Lagrangian approach. This method is
an extension to the penalty method and uses values for the penalty parameter which
lead to a better conditioned numerical problem. In the sequel we first consider penalty
methods, based upon a mixed formulation. Subsequently, we show how to extend the
mixed penalty treatment to the augmented Lagrangian algorithm which is based on an
iterative update procedure generally attributed to Uzawa [1].

11.2 Mixed Penalty Methods for Constraints

Consider a general constraint equation expressed as

g(u) = 0 (11.4)

which is to be imposed for some part of the domain, Ωc. The constraint may be
included as part of the problem formulation by supplementing the variational problem,
Π(u), with the term

Πc(u,λ) =

∫
Ωc

λT g(u) dΩ (11.5)

Define the variations as
uη = u + ηU (11.6)

and
λη = λ + ηΛ (11.7)

The variation of the integral gives the added terms

dΠcη

dη

∣∣∣∣
η=0

=

∫
Ωc

ΛT g(u) dΩ +

∫
Ωc

UT GT λ dΩ (11.8)

where

G =
∂g

∂u
(11.9)

The Euler equation for the first integral leads to the constraint equation.

g(u) = 0 (11.10)

for each point in Ωc, and the second equation leads to a term which is combined with
the variation of the original variational theorem to generate revised Euler equations
for the problem.

In a finite element matrix setting we can approximate the λ in each element as

λ = Nλ
α(x)λα (11.11)
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and use the usual isoparametric interpolations for u. Thus, (11.8) generates the matrix
problem

G =
dΠcη

dη

∣∣∣∣
η=0

=
[
(Λα)T (UI)T

] [Pλ
α

Pλ
I

]
(11.12)

where

Pλ
α =

∑
e

∫
Ωce

Nλ
α g(u) dΩ (11.13)

and

Pλ
I =

∑
e

∫
Ωce

NI GT λ dΩ (11.14)

For non-linear constraint equations it is necessary to linearize this expression for com-
bination with the remaining part of the problem. Performing the linearization leads to
the problem [

(Λα)T (UI)T
] [ 0 Kλ

αJ

Kλ
Iβ Kλ

IJ

] [
dλβ

duJ

]
(11.15)

where

Kλ
Iβ =

∑
e

∫
Ωce

NI GT Nλ
β dΩ (11.16)

Kλ
αJ =

∑
e

∫
Ωce

Nλ
α GNJ dΩ = (Kλ

Jα)T (11.17)

and

Kλ
IJ =

∑
e

∫
Ωce

NI λ
T ∂2g

∂u∂u
NJ dΩ =

∑
e

∫
Ωce

NI λ
T ∂G

∂u
NJ dΩ (11.18)

The difficulty with the above formulation lies in the fact that there are no terms in
(11.15) which are associated with the diagonals for the λ degrees-of-freedom. Moreover,
if the constraints are linear there are no terms on the diagonals for any of the degrees-
of-freedom. This greatly, complicates a solution process since for a direct solution
the equations must be ordered to eliminate the displacement equations prior to the
Lagrange multiplier equations. Furthermore, iterative methods are even more difficult
to consider. The deficiency associated with the diagonals for the Lagrange multiplier
equations may be removed by adding a regularization term to (11.5). The modification
to the variational term considered takes the form

Πc(u,λ) =

∫
Ωc

λT g(u) dΩ −
∫

Ωc

1

k
λTλ dΩ (11.19)

where k is a penalty parameter introduced such that in the limit as k goes to infinity
the original problem is recovered.

dΠcη

dη

∣∣∣∣
η=0

=

∫
Ωc

ΛT (g(u) − 1

k
λ) dΩ +

∫
Ωc

UT GT λ dΩ (11.20)
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The Euler equation for the first integral now gives the constraint equation.

g(u) − 1

k
λ = 0 (11.21)

for each point in Ωc. It is evident that the solution converges to satisfy the constraint
only in the limit when k is infinity. The linearization of (11.20) gives the matrix
problem [

(Λα)T (UI)T
] [Kλ

αβ Kλ
αJ

Kλ
Iβ Kλ

IJ

] [
dλβ

duJ

]
(11.22)

where

Kλ
αβ =

∑
e

∫
Ωce

Nλ
α

1

k
INλ

β dΩ (11.23)

Many cases for constraints permit the elimination of the equations for λα at a local
level. Thus, if a Newton solution scheme is employed the residual equations may be
written as[

Rλ
α

RI(u) + Rλ
I

]
=

[
−Pλ

α + Kλ
αβ λ

β

R
(
Iu

) − Pλ
I

]
−
[
−Kλ

αβ Kλ
αJ

Kλ
Iβ KIJ + Kλ

IJ

] [
dλβ

duJ

]
=

[
0
0

]
(11.24)

This gives the set of equations to solve for the increment as[
−Kλ

αβ Kλ
αJ

Kλ
Iβ KIJ + Kλ

IJ

] [
dλβ

duJ

]
=

[
−Pλ

α + Kλ
αβ λ

β

RI(u) − Pλ
I

]
(11.25)

Solving the first row of (11.25) gives

dλβ = (Kλ
αβ)−1

[
Pλ
α + Kλ

αJ du
J
]
− λβ (11.26)

Since the residual equation for λβ is linear it may be solved to give

λβ =
(
Kλ
αβ

)−1
Pλ
α (11.27)

and this simplifies (11.26) to

dλβ =
(
Kλ
αβ

)−1
Kλ
αJ du

J (11.28)

which when substituted into the second of (11.25) once again yields a displacement
model for the problem which is expressed as

K̂IJ du
J = RI(u) − Pλ

I (11.29)

where
K̂IJ = KIJ + Kλ

IJ + Kλ
Iβ

(
Kλ
αβ

)−1
Kλ
αJ (11.30)
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The above solution process defines a perturbed Lagrangian form of the penalty solution
process. In order to yield a solution which provides an adequate satisfaction of the
constraint equation, fairly large values for the penalty parameter should be used (gen-
erally on the order of about half machine precision, e.g., 106 or 107). The values used
then yield stiffness modifications for the second term on the right hand side of (11.30)
which are several orders larger than components appearing in the stiffness, KIJ . If the
values are too large, ill conditioning for the solution to the linear equations will result;
if too small, the constraint may be violated by an unacceptable amount. Furthermore,
iterative solutions become very difficult for these large penalty values. Consequently,
an alternative approach is needed. In the next section, the augmented Lagrangian
method is introduced as an alternative.

11.3 Augmented Lagrangian Method for Constraints

The augmented Lagrangian strategy presented is a simple modification to the perturbed
Lagrangian form which now becomes

Πc(u,λ,λA) =

∫
Ωc

(λ + λA)T g(u) dΩ −
∫

Ωc

1

k
λTλ dΩ (11.31)

where λA is the augmented term. The variation to (11.31) gives

dΠcη

dη

∣∣∣∣
η=0

=

∫
Ωc

ΛT

(
g(u) − 1

k
λ

)
dΩ +

∫
Ωc

UT GT (λ + λA) dΩ (11.32)

+

∫
Ωc

ΛT
A g(u) dΩ (11.33)

The Euler equation for the variation of λ gives the equation

g(u) − 1

k
λ = 0 (11.34)

which may be used to compute λ. The variation for λA gives the constraint equation

g(u) = 0 (11.35)

and, thus, the constraint equation is satisfied independently of the value of the penalty
parameter, k, and we also conclude that λ must vanish at the solution. Using, these
facts we also note that the algorithm merely reduces to the original Lagrange multiplier
method, but with λA used as the multiplier. The method may be made computation-
ally viable by making the determination of λA an iterative algorithm. The Uzawa
algorithm is the simplest algorithm which may be considered. In the Uzawa algorithm
we introduce an outer iteration loop for the augmentation. For each step in the analysis
we assume:
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1. Let j be the augmentation iteration counter. For each time, tn+1, set j to zero
and take the initial value of the augmented multiplier as

λ
β(j)
A = λβA(tn) (11.36)

where the dependence on the n+1 step on the left side is implied. Let λβA(0) = 0.

2. Solve the non-linear problem[
−Kλ

αβ Kλ
αJ

Kλ
Iβ KIJ + Kλ

IJ

] [
dλβ

duJ

]
=

[
−Pλ

α + Kλ
αβ λ

β

R
(
Iu

) − (PA)λI

]
=

[
0

RI(u) − (PA)λI

]
(11.37)

where
λβ =

(
Kλ
αβ

)−1
Pλ
α (11.38)

and

(PA)λI =
∑
e

∫
Ωce

NI GT Nλ
β (λβ + λ

β(j)
A ) dΩ (11.39)

In the above the iteration aspects for the incremental problem are not shown.

3. After the iteration for the incremental problem converges update the augmented
parameters using

λ
β(j+1)
A = λ

β(j)
A + λβ (11.40)

where
λβ =

(
Kλ
αβ

)−1
Pλ
α (11.41)

is computed using the converged solution from step 2.

4. Check convergence for the augmented step. If the constraint is satisfied to within
a specified tolerance, or the change in the λβ is less than some tolerance times
λ
β(j+1)
A proceed to the next time and repeat steps 1 to 3.

If not converged increase the j counter and repeat steps 2 and 3.

To perform the above algorithm it is necessary for the penalty parameter k to be large
enough for the iteration to converge. All that is required is that the terms in the added
stiffness be somewhat larger than the original stiffness terms. The convergence rate for
the augmented iteration is generally linear, not quadratic as in a Newton solution. The
larger k is made the more rapid the convergence. Thus, it is desirable for the value to
be at least one or two orders in magnitude larger than the conventional stiffness terms
(as compared with the six or seven used in a penalty approach). Use of values with
this range in magnitudes leads to 3-6 augmented steps for most problems. The number
of non-linear iterations will decrease for the later augmented steps since the violation
in the constraint is becoming less and less.
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Using the above augmented Lagrangian approach to satisfy the incompressibility con-
straint leads to a particularly simple update. For the constant pressure/volume element
there is only one equation for each element. Thus the equations to be solved are scalar.
For the enhanced element there is one equation at each Gauss point so it is also easy to
modify. For more complex situations, involving multi-point constraints, the situation
is slightly more complex. Augmented approaches have been used to solve a variety
of problems in finite element methods. In some cases (for example, frictional contact
problems) it is possible to augment in a way which renders a problem which origi-
nally has an un-symmetric tangent matrices to one which is symmetric. In general,
the method is the one of current choice since, as a special case, it also includes an
option of penalty solution through the perturbed Lagrangian approach (merely omit
all augmented steps!).



Chapter 12

Transient Analysis of Non-Linear
Problems

12.1 Adding the transient terms

The variational equation for a quasi-static problem solved by the finite element method
is expressed as

dΠη

dη

∣∣∣∣
η=0

=
∑
e

(UI)T
[∫

Ωe

BT
I σ̃ dΩ −

∫
Ωe

NI bv dΩ −
∫

Γe

NI t̄ dΓ

]
= 0 (12.1)

where σ̃ is computed for a displacement, mixed, or enhanced method as described
in previous chapters. In order to extend the variational equation to accommodate
transient analysis, the body force vector, bv, is replaced by

bv ← bv − ρ ü (12.2)

in which ü is the acceleration vector. With this replacement the variational equation
becomes

dΠη

dη

∣∣∣∣
η=0

=
∑
e

(UI)T
[∫

Ωe

BT
I σ̃ dΩ +

∫
Ωe

NI ρ ü dΩ −
∫

Ωe

NI b dΩ

−
∫

Γe

NI t̄ dΓ

]
= 0 (12.3)

which leads to the residual equation for each node

RI = FI −
∑
e

∫
Ωe

BT
I σ̃ dΩ −

∑
e

∫
Ωe

NI ρ ü dΩ (12.4)
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The last term is the inertia contribution to the momentum equation. For continuum
problems the acceleration is computed from the isoparametric interpolations as

ü = NJ(x) üJ(t) (12.5)

thus, the inertia term may be written as∑
e

∫
Ωe

NI ρ ü dΩ = MIJ üJ (12.6)

where MIJ is the mass matrix for the problem. If we define

PI(σ̃) =
∑
e

∫
Ωe

BI σ̃ dΩ (12.7)

the residual equation becomes

RI = FI − PI(σ̃) − MIJ üJ (12.8)

or, by ignoring the nodal indices, in the total matrix form as

R = F − P(σ̃) − M ü (12.9)

In general, the above equation is a non-linear set of ordinary differential equations.
The practical solution of the equations is accomplished using a time marching scheme,
as described in the next section.

12.2 Newmark Solution of Momentum Equations

In this section we illustrate the solution of (12.9) by a time marching process using
the classical Newmark method of solution [15]. The Newmark method is a one-step
method which may be used to advance a solution from time tn to time tn+1. The
method is self starting, consequently, given the initial conditions,

u(0) = d̄0 ; u̇(0) = v̄0 (12.10)

where d̄0 and v̄0 are the initial displacement and velocity vectors, the solution at the
first increment may be determined. The Newmark method uses approximations to the
displacements, velocities, and accelerations and these are given as:

un ≈ u(tn) (12.11)

vn ≈ u̇(tn) (12.12)
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and
an ≈ ü(tn) (12.13)

The initial state is completed by solving the residual equation at time zero. Accordingly,

R0 = F0 − P(σ̃0) − M a0 = 0 (12.14)

which yields the solution
a0 = M−1 [F0 − P(σ̃0)] (12.15)

this is combined with the initial conditions

u0 = d̄0 ; v0 = v̄0 (12.16)

to give a complete state at time zero.

The Newmark formulas to advance a solution are given by

un+1 = un + ∆tvn + ∆t2
[
(
1

2
− β) an + β an+1

]
(12.17)

and
vn+1 = vn + ∆t [(1 − γ) an + γ an+1] (12.18)

in which β and γ are numerical parameters which control the stability and numeri-
cal dissipation, respectively. For γ = 1

2
there is no numerical dissipation, whereas

for γ > 1
2

numerical dissipation is introduced. The values of β control primarily
the stability but also influence the form of the matrix problem. A β of zero leads
to a formulation which is called explicit, where for no damping, the solution for the
acceleration, an+1, involves only the mass matrix. For a diagonal mass this solution
step is very efficient; however, in general the method is only conditionally stable and
very small time steps are needed. For β non-zero, the method is implicit and a solu-
tion step normally involves linearization of the momentum equation and an iterative
solution process based on Newton’s method. The advantage of implicit solutions is
improved stability, where quite large time steps may usually be taken. For example,
for β = 0.25, the method for linear problems is unconditionally stable. This method
is commonly called trapezoidal rule or constant average acceleration. Values of β less
than 0.25 should not be used since they are only conditionally stable with allowable
time steps not much larger than the explicit scheme.

The advancement of a solution from one step to the next is completed by combining
(12.17) and (12.18) with the momentum equation written at time tn+1. Accordingly,

Rn+1 = Fn+1 − P(σ̃n+1) − M an+1 = 0 (12.19)

In order to advance the solution to the next time it is necessary to recast the problem in
an iterative form. This involves selecting appropriate values for the variables to initiate
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the step, linearization of the equations, solution of the linearized equations, and updat-
ing of the variables. Since the Newmark formulas are linear and have scalar coefficients
they may be directly used in the momentum equation to reduce the primary unknowns
to a single vector. This vector may be the displacements, un+1, the velocities, vn+1,
or the accelerations, an+1. For the explicit case the only viable choice is accelerations.
In the sequel we will address the implicit case and use the displacements, un+1, as the
primary unknowns. For an implicit solution it is best to select the initial value for the
iterate as

u
(0)
n+1 = un (12.20)

Any other choice may perturb the displacements in such a way to cause false inelastic
values, especially near boundaries, which impede convergence of the Newton method.
With the choice (12.20), the values of the initial state which satisfy the Newmark
formulas are given by

v
(0)
n+1 =

(
1 − γ

β

)
vn + ∆t

(
1− γ

2 β

)
an (12.21)

and

a
(0)
n+1 = − 1

β∆t
vn +

(
1− 1

2 β

)
an (12.22)

Linearizing the Newmark formulas leads to the results

du
(i+1)
n+1 = β∆t2 da

(i+1)
n+1 (12.23)

and
dv

(i+1)
n+1 = γ∆t da

(i+1)
n+1 (12.24)

Thus the appropriate update formulas (which also satisfy the Newmark formulas) are
given by

u
(i+1)
n+1 = u

(i)
n+1 + du

(i+1)
n+1 (12.25)

v
(i+1)
n+1 = v

(i)
n+1 +

γ

β∆t
du

(i+1)
n+1 (12.26)

and

a
(i+1)
n+1 = a

(i)
n+1 +

1

β∆t2
du

(i+1)
n+1 (12.27)

The linearization of the momentum equation leads to

K
?(i)
t du

(i+1)
n+1 = R

(i)
n+1 (12.28)

where

K
?(i)
t = −

[
∂R

∂u
+

∂R

∂v

∂v

∂u
+

∂R

∂a

∂a

∂u

]
(12.29)

or

K
?(i)
t = Kt +

γ

β∆t
Ct +

1

β∆t2
M (12.30)

In (12.30), Kt is the tangent stiffness matrix as computed for the quasi-static problem,
Ct is a tangent damping matrix, and M is the mass matrix introduced above.
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12.3 Hilber-Hughes-Taylor (HHT) Algorithm

The Newmark algorithm given in the previous section can be altered by considering
the residual for the momentum equation to be given by1

Rn+α = Fn+1 − P(un+α,vn+α) − M an+1 = 0 (12.31)

where the displacement at the intermediate point is given by2

un+α = (1− α) un + αun+1 (12.32)

and the velocity by

vn+α = (1− α) vn + αvn+1 (12.33)

In the above tn+α = (1 − α)tn + αtn+1. This algorithm is called the Hilber-Hughes-
Taylor α-method or, for short, the HHT-method [9] and has been analyzed extensively
for stability and dissipative properties by Hughes [13]. To reduce the properties to a
single parameter, the relations,

β =
(2− α)2

4
(12.34)

and

γ =
3

2
− α (12.35)

are employed.

Linearization of 12.31 gives the tangent matrix

K? =
1

β∆t2
M +

αγ

β∆t
C + αK (12.36)

for use in the Newton method

K? dun+1 = Rn+α (12.37)

1Note that the definition of α is different than in the original paper [9].
2Note that the definition of α is different than in Hilber et al.[9].



Chapter 13

Finite Deformation Formulations:
Elasticity

13.1 Kinematics and Deformation

The basic equations for solid mechanics may be found in standard references on the
subject (e.g., see Chadwick[2], Curnier[5], Gurtin[7], or Holzapfel[12]). The solution by
finite element methods for many of the routines in FEAP are described in the books by
Zienkiewicz & Taylor[27] and by Zienkiewicz, Taylor & Fox[28]. Here only a summary of
the basic equations is presented using a mix of intrinsic and indicial notation.. A body
B has material points whose positions are given by the vector X in a fixed reference
configuration1, Ω0, in a three dimensional space. In Cartesian coordinates the position
vector may be described in terms of its components as:

X = XA EA ; A = 1, 3 (13.1)

where EA are unit base vectors. After the body is loaded each material point is
described by its position vector, x, in the current configuration, Ω. The position
vector in the current configuration may be given in terms of its components as

x = xa ea ; a = 1, 3 (13.2)

where ea are unit base vectors for the current time. In our discussion, common origins
and directions are used for the reference and current coordinates. The position vector
at the current time is related to the reference configuration position vector through the
mapping

x = φ(X, t) (13.3)

1As much as possible we adopt the notation that upper case letters refer to quantities defined in
the reference configuration and lower case letters to quantities defined in the current configuration.
Exceptions occur when quantities are related to both the reference and current configurations.
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When common origins and directions for the coordinate frames are used, a displacement
vector, u, may be introduced as the change between the two frames. Accordingly,

x = 1 X + u (13.4)

is used. In the above 1 is a rank two shifter tensor between the two coordinate frames,
and is given by

1 = δaAea ET
A ; a, A = 1, 3 (13.5)

where δaA is a Kronecker delta quantity such that

δaA =

{
1 if a = A
0 if a 6= A

(13.6)

In component form we then have

xa = δaAXA + ua (13.7)

A fundamental measure of deformation is described by the deformation gradient relative
to X given by

F =
∂φ

∂X
(13.8)

subject to the constraint
J = detF > 0 (13.9)

to ensure that material volume elements remain positive. The determinant of the
deformation gradient maps a volume element in the reference configuration into one in
the current configuration, that is

dv = detF dV = J dV (13.10)

where dV is a volume element in the reference configuration and dv its corresponding
form in the current configuration.

The deformation gradient relates the current configuration to the reference configura-
tion, consequently it has components defined as

F = FaA ea ET
A (13.11)

The deformation gradient may be expressed in terms of the displacement as

F = 1 +
∂u

∂X
(13.12)

Using F directly complicates the development of constitutive equations and it is com-
mon to introduce deformation measures which are related completely to either the
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reference or the current configurations. Accordingly, for the reference configuration,
the right Cauchy-Green deformation tensor, C, is introduced as

C = FT F (13.13)

Alternatively the Green strain tensor, E (do not confuse with the base vectors), is
introduced as

E =
1

2
(C− 10) (13.14)

where 10 is the rank two identity tensor with respect to the reference configuration and
is given by

10 = δAB EA ET
B (13.15)

and δAB is a Kronecker delta for the reference configuration. The Green strain may be
expressed in terms of the displacements as

E =
1

2

[
1T

∂u

∂X
+ (

∂u

∂X
)T 1 + (

∂u

∂X
)T

∂u

∂X

]
(13.16)

Defining the displacement vector for the reference configuration as

U = 1 u (13.17)

with components
UA = δaA ua (13.18)

the components of the Green strain may be written in the familiar form

EIJ =
1

2

(
∂UI
∂XJ

+
∂UJ
∂XI

+
∂UK
∂XI

∂UK
∂XJ

)
(13.19)

In the current configuration a common deformation measure is the left Cauchy-Green
deformation tensor, b, expressed as

b = F FT (13.20)

The Almansi strain tensor, e, may be expressed in terms of b as

e =
1

2

(
1t − b−1

)
(13.21)

where 1t is the rank two identity tensor with respect to the current configuration and
is given by

1t = δab ea eTb (13.22)

and δab is a Kronecker delta for the current configuration.
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13.2 Stress and Traction Measures

Stress measures the amount of force per unit of area. In finite deformation problems
care must be taken to describe the configuration to which stress is measured. The
Cauchy stress, σ, and the Kirchhoff stress, τ , are measures defined with respect to the
current configuration. They are related through the determinant of the deformation
gradient as

τ = τab ea eTb = J σ = J σab ea eTb (13.23)

The second Piola-Kirchhoff stress, S, is a stress measure with respect to the reference
configuration and has components

S = SAB EA ET
B (13.24)

The second Piola-Kirchhoff stress is related to the Kirchhoff stress through

τ = F S FT (13.25)

Finally, the first Piola-Kirchhoff stress, P, is related to S through

P = F S = PaA ea ET
A (13.26)

which gives
τ = P FT (13.27)

For the current configuration traction is given by

t = σT n (13.28)

where n is an unit outward pointing normal to a surface defined in the current configu-
ration. This form of the traction may be related to reference surface quantity through
force relations defined as

t ds = t0 dS (13.29)

where ds and dS are surface elements in the current and reference configurations,
respectively, and t0 is traction on the reference configuration. Note that the direction
of the traction component is preserved during the transformation and, thus, remains
related to the current configuration forces. The reference configuration traction is
deduced from the first Piola-Kirchhoff stress through

t0 = P N (13.30)

where N is an unit outward pointing normal to the reference surface. Using the defi-
nition for traction and stresses we obtain

FT n ds = J N dS (13.31)

and

ds = J
[
N ·

(
C−1 N

)] 1

2
dS (13.32)

to relate changes in the surface area and transformation of the normals.
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13.3 Balance of Momentum

The balance of momentum for a solid body consists of two parts: balance of linear
momentum; and balance of angular momentum. The balance of linear momentum may
be expressed by integrating the surface and body loads over the body. Accordingly, for
a body force per unit mass, bm the resultant force, R, acting on a body is given by∫

Ω

ρbm dv +

∫
∂Ω

t ds = R (13.33)

where ρ is the mass density per unit volume and ∂Ω is the surface area of the body,
both for the current configuration. The mass density in the current configuration is
related to the reference configuration mass density, ρ0, through

ρ0 = J ρ (13.34)

The total linear momentum of the body is given by

p =

∫
Ω

ρv dv (13.35)

The balance of linear momentum describes the translational equilibrium of a body (or
any part of a body) and is obtained by equating the resultant force, R, to the rate of
change of the body momentum, ṗ. Accordingly,∫

Ω

ρbm dv +

∫
∂Ω

tds =

∫
Ω

ρ v̇ dv (13.36)

Introducing the relationship between traction and stress and using the divergence prin-
cipal leads to the balance of linear momentum relation∫

Ω

[divσ + ρ (bm − v̇)] dv = 0 (13.37)

where div is the divergence with respect to the current configuration, that is,

divσ =
∂σab
∂xa

eb (13.38)

Since the above result must hold for any part of a body a local form for balance of
linear momentum may be deduced as

divσ + ρbm = ρ v̇ (13.39)

This relation is also called the local equilibrium equation for a body.



CHAPTER 13. FINITE DEFORMATION 110

Similar relations may be constructed for the balance of angular momentum and lead
to the requirement

σ = σT (13.40)

that is, the Cauchy stress tensor is symmetric and, thus, has only six independent
components.

The balance of momentum may also be written for the reference configuration using
results deduced above. Accordingly, we may write the integrals with respect to the
reference body as ∫

Ω0

ρ0 bm dV +

∫
∂Ω0

t0 dS =

∫
Ω0

ρ0 v̇ dV (13.41)

where the definitions for ρ, σ and n ds in terms of reference configuration quantities
have been used. Using the divergence principle on the traction term leads to the result∫

Ω0

[DivP + ρ0 (bm − v̇)] dV = 0 (13.42)

which has the local form
DivP + ρ0 bm = ρ0 v̇ (13.43)

In these relations Div is the divergence with respect to the reference configuration
coordinates

DivP =
∂PaA
∂XA

ea (13.44)

We also note that the symmetry of the Cauchy stress tensor, σ, leads to the corre-
sponding requirement on P

F PT = P FT (13.45)

and subsequently to the symmetry of the second Piola-Kirchhoff stress tensor

S = ST (13.46)

13.4 Boundary Conditions

The basic boundary conditions for a solid region consist of two types: displacement
boundary conditions and traction boundary conditions.

Boundary conditions are defined on each part of the boundary for which a component
or components of a vector may be specified without solution of any auxiliary problem.
The conditions are usually given in terms of their components with respect to a local
coordinate system defined by the orthogonal basis, e′a, a = 1, 2, 3. At each point on
the boundary one (and only one) boundary condition must be specified for all three
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directions of the basis e′a. Generally, these conditions may be a mixture of displacement
and traction boundary conditions.

For displacement boundary conditions, components of the position vector, x, may be
expressed with respect to the basis as

x = x′a e′a (13.47)

Boundary conditions may now be given for each component by requiring2

x′a = x̄′a (13.48)

for each point on the displacement boundary, ∂Ωu. The boundary condition may also
be expressed in terms of components of the displacement vector, u. Accordingly,

u = x− 1 X = u′a e′a (13.49)

define components of the displacement with respect to the prime coordinates. Thus,
boundary conditions may now be given for each displacement component by requiring

u′a = ū′a (13.50)

In general, the boundary condition is non-linear unless points in the reference config-
uration can be identified easily (such as fixed points).

The second type of boundary condition is a traction boundary condition. Using the
orthogonal basis described above, the traction vector t may be written as

t = t′a e′a (13.51)

Traction boundary conditions may be given for each component by requiring

t′a = t̄′a (13.52)

for each point on the boundary, ∂Ωt.

13.5 Initial Conditions

Initial conditions describe the state of a body at the start of an analysis. The conditions
describe the initial kinematic state with respect to the reference configuration used
to define the body and the initial state of stress in this position. In addition, for
constitutive equations the initial values for internal variables which evolve in time
must be given.

2A specified quantity is indicated by a superposed bar, (̄·).
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The initial conditions for the kinematic state consist of specifying the position and
velocity at time zero. Accordingly,

x(0) = φ(X, 0) = d̄0(X) (13.53)

and
v(0) = φ̇(X, 0) = v̄0(X) (13.54)

are specified at each point in the body.

The initial conditions for stresses are specified as

σ(0) = σ̄0 (13.55)

at each point in the body.

13.6 Material Constitution - Finite Elasticity

The equations are completed by specifying a material constitution. As an example, we
consider a finite deformation form for hyper-elasticity. Thus, we postulate the existence
of a strain energy density function, W , from which stresses are computed by taking a
derivative with respect to a deformation measure. For a strain energy density expressed
in terms of the right Cauchy-Green deformation tensor, C, the second Piola-Kirchhoff
stress tensor is computed as

S = 2
∂ W

∂C
(13.56)

For an isotropic material the strain energy density depends only on the three invariants
of the deformation. Here we consider the three invariants as

IC = trC = CKK (13.57)

IIC =
1

2
(I2
C − trC2) =

1

2
(CKK CLL − CKLCLK) (13.58)

and
IIIC = detC = J2 (13.59)

and write the strain energy density as

W (C) = W (IC , IIC , J) (13.60)

We select J instead of IIIC as the measure of the volume change. Thus, the stress is
computed as

S = 2
∂ W

∂ IC

∂ IC
∂C

+ 2
∂ W

∂ IIC

∂ IIC
∂C

+ 2
∂ W

∂ J

∂ J

∂C
(13.61)
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The derivatives of the invariants may be evaluated as

∂ IC
∂C

= 10 (13.62)

∂ IIC
∂C

= IC 10 −C (13.63)

∂ J

∂C
= J C−1 (13.64)

Thus, the stress is computed to be

S = 2
∂ W

∂ IC
10 + 2

∂ W

∂ IIC
(IC 10 −C) +

∂ W

∂ J
J C−1 (13.65)

The second Piola-Kirchhoff stress may be transformed to the Kirchhoff stress using
(13.25), and gives

τ = 2
∂ W

∂ IC
b + 2

∂ W

∂ IIC
(IC b− 1t) +

∂ W

∂ J
J 1t (13.66)

As an example, we consider the case of a Neo-Hookean material which includes a
compressibility effect. The strain energy density is expressed as

W (IC , J) = 1
2
µ (IC − 3− 2 ln J) + 1

2
λ (J − 1)2 (13.67)

The material constants λ and µ have been selected to give the same response in small
deformations as a linear elastic material using the Lamé moduli. Substitution into
(13.65) gives

S = µ (10 −C−1) + λ J (J − 1) C−1 (13.68)

which may be transformed to give the Kirchhoff stress

τ = µ (b− 1t) + λ J (J − 1) 1t (13.69)

The Cauchy stress is then obtained from

σ =
1

J
τ (13.70)

Some formulations require computation of the elastic moduli for the finite elasticity
model. The elastic moduli with respect to the reference configuration are deduced from

CI = 4
∂2W

∂C ∂C
(13.71)

The spatial elasticities related to the Cauchy stress, σ, are obtained by the push forward

cijkl =
1

J
FiI FjJ FkK FlLCIJKL (13.72)
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For the Neo-Hookean model the material moduli with respect to the reference config-
uration are given as

CIJKL = λ J (2 J − 1)C−1
IJ C

−1
KL − 2 [µ− λ J (J − 1)] C−1

IKC
−1
JL (13.73)

Transforming to spatial quantities gives

cijkl = λ (2 J−1) δijδkl − 2
[µ
J
− λ (J − 1)

]
δikδjl (13.74)

To preserve the both major and minor symmetries in the tangent it is necessary to
make the substitution

δikδjl → 1
2

(δikδjl + δilδjk) ≡ Iijkl (13.75)

giving the tangent form

cijkl = λ (2 J−1) δijδkl − 2
[µ
J
− λ (J − 1)

]
Iijkl (13.76)

We note that when J = 1

bij − δij →
∂ui
∂xj

+
∂uj
∂xi
≡ 2 εij (13.77)

giving the Cauchy stress and tangent

σij = 2µ εij + λ δij and cijkl = λ δijδkl − 2µ Iijkl (13.78)

which agrees with the results from linear elasticity.

Other forms of constitutive equations may be introduced using appropriate expansions
of the strain energy density function. As an alternative, an elastic formulation may
also be expressed in terms of the principal stretches (which are the square root of the
eigenvalues of C); however, the computations are quite delicate (see [20]).

13.7 Variational Description

A variational theorem for finite elasticity may be written in the reference configuration
as

Π(u) =

∫
Ω0

W (C(u)) dV −
∫

Ω0

uTρ0bm dV −
∫
∂Ω0t

uT t̄0 dS (13.79)

where t̄0 denotes the specified traction in the reference configuration and ∂Ω0t is the
traction boundary for the reference configuration. In a finite element formulation, the
basic element arrays evolve from the balance of linear momentum equations written
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as a variational equation. Accordingly, in the reference configuration a variational
equation is defined from (13.79) as3

δΠ =

∫
Ω0

∂ W

∂C
δC dV −

∫
Ω0

δuTρ0 bm dV −
∫
∂Ω0t

δuT t̄0 dS = 0 (13.80)

where δu is a variation of the displacement (often called a virtual displacement) which
is arbitrary except at the kinematic boundary condition locations, ∂Ωu, where, for con-
venience, it vanishes. Since a virtual displacement is an arbitrary function, satisfaction
of the variational equation implies satisfaction of the balance of linear momentum at
each point in the body as well as the traction boundary conditions. We note that using
(13.26), (13.56) and constructing the variation of C, the first term reduces to

∂ W

∂C
δC =

1

2
S δC = δFT P (13.81)

Furthermore, by introducing the inertial forces through the body force as

bm → bm − v̇ = bm − ẍ (13.82)

where v is the velocity vector, the variational equation may be written as

δΠ =

∫
Ω0

δuT ρ0 v̇ dV +

∫
Ω0

δFT P dV (13.83)

−
∫

Ω0

δuTρ0 bm dV −
∫
∂Ω0

δuT t̄0 dS = 0 (13.84)

This is the variational equation form of the equations which is used for subsequent
development of the finite element arrays. The first term side represents the inertial
terms. For static and quasi-static problems this term may be neglected. The second
term is the stress divergence term which also may be given in terms of the second
Piola-Kirchhoff stress as

δFT P = δFT F S =
1

2
δC S = δE S (13.85)

where symmetry of the second Piola-Kirchhoff stress is noted. The third and fourth
terms of the variational equation represent the effects of body and surface traction
loadings.

3Since the notation for finite deformation includes use of upper and lower case letters, the notation
for a variation to a quantity is written as δ. Thus,

uη → u + δu

Furthermore, Voigt (matrix) notation is used as much as possible to express the variational equation.
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The above variational equation may be transformed to the current configuration as

δΠ =

∫
Ω

δuT ρ v̇ dv +

∫
Ω

∇ (δu)T σ] dv (13.86)

−
∫

Ω

δuT ρbm dv −
∫
∂Ωt

δuT t̄ ds = 0 (13.87)

The last result is identical to the conventional, small deformation formulation found
in earlier chapters and in finite element texts (e.g., see Hughes[13] or Zienkiewicz and
Taylor[30, 28]) except that integrals are performed over the deformed current configura-
tion.

Representations with respect to a fixed reference configuration are introduced to sim-
plify the development of the basic relations. Some authors refer to the case where
the reference configuration is the initial description of the body (at time zero) as a
total Lagrangian description and to one which is referred to the previous computed
configuration as an updated Lagrangian description. For the development considered
here it is not important which is selected since ultimately all integrations are carried
out over the current configuration; and, either a total or an updated description can
be transformed to the current state.

13.8 Linearized Equations

The stress divergence term may be written in many forms, as shown above. To solve
a boundary value problem the nonlinear equations may be linearized and solved as
a sequence of linear problems. The linearization should be considered in a reference
configuration representation. In this section it is expedient to again use a tensor form
of the equations instead of the matrix form used above. Accordingly, a formulation
based upon the second Piola-Kirchhoff stress and written in tensor form is considered
for the linearization step.∫

Ω0

tr (δFT F S) dV =

∫
Ω0

tr (δF S FT ) dV (13.88)

which are equivalent forms. In the above, the trace operation denotes the following
step (reference configuration tensors are used as an example, but other forms also hold)

tr (A B) = AIJ BJI (13.89)

Note that in the reference configuration the domain, Ω0 is fixed (i.e, does not change)
which is not true for a formulation considered directly in the current configuration.
Consequently, a linearization may be written as

∆

(∫
Ω0

tr (δF S FT ) dV

)
=

∫
Ω0

tr (δF S ∆FT ) dV +

∫
Ω0

tr (δF ∆S FT ) dV (13.90)
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We also note that for a continuum problem ∆ (δF) vanishes, which is not true for
problems in beams, plates and shells and, thus, additional terms are necessary. The
linearization may be transformed to the current configuration and expressed in terms
of quantities associated with the Cauchy stress. Accordingly, using

δF = ∇ (δu) F (13.91)

and a similar expression for ∆F gives

∆ (

∫
Ω0

tr (δF S FT dV ) =

∫
Ω

tr (∇ (δu)σ∇ (∆u)T ) dv

+

∫
Ω

tr (∇ (δu) ∆σ) dv (13.92)

where

∆σ =
1

J
F ∆S FT (13.93)

The first term on the right hand side leads to the geometric stiffness term in a finite
element formulation, whereas, the second term depends on the material constitution
and leads to the material part of the stiffness.

The material part involves ∆S which is computed for each particular constitutive
relation. This will be discussed later for a particular constitutive equation; however,
in general we seek an expression of the form

∆S = CI ∆E (13.94)

where CI are the material moduli for the material constitution expressed in the reference
configuration. When used with the definition of ∆σ this may be transformed to the
current configuration as

∆σ = cI ∆ε (13.95)

where cI are the material moduli expressed in the current configuration. The moduli
are related through

J cI = F F CI FT FT (13.96)

In the above ∆ε is the symmetric part of the gradient of the incremental displacement.
It is expressed as

∆ε =
1

2
[∇∆u + (∇∆u)T ] (13.97)

Substitution of the above into the term for the material part of the stiffness yields∫
Ω

tr (∇ (δu) ∆σ) dv =

∫
Ω

tr (δε cI ∆ε)) dv (13.98)

which we note is also identical to the form of the linear problem.
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13.9 Element Technology

A finite element discretization may be constructed by dividing the body into finite
elements.4 Accordingly, we have

Ω ≈ Ωh =
∑
e

Ωe (13.99)

where Ωe is the domain of an individual element, e, and Ωh is the domain covered
by all the elements. We note that in general Ωh is an approximation to the domain
of the real body since the elements only have mapped polygonal shapes. With this
approximation the integrals in the variational equation may be approximated as∫

Ω

( · ) dv ≈
∫

Ωh

( · ) dv =
∑
e

∫
Ωe

( · ) dv (13.100)

Using this approximation the variational equation become∑
e

[ ∫
Ωe

δuT ρ v̇ dv +

∫
Ωe

∇ (δu)T σ dv

]
=

∑
e

[ ∫
Ωe

δuT ρbm dv +

∫
∂Ωet

δuT t̄ ds

]
(13.101)

An approximate variational solution may be developed by writing trial solutions and
test functions for the motions and virtual displacements, respectively. Adopting an
isoparametric formulation (e.g., see [13, 30, 28]) we may write for a typical element

X = NI(ξ) XI ; I = 1, 2, , nen (13.102)

where nen is the number of nodes defining an element, I are node labels for the ele-
ment, NI(ξ) are shape functions for node I which maintain suitable continuity between
contiguous elements and XI are the coordinates for node I. Similarly, we may write
approximations for the current configuration as

x = NI(ξ) xI(t) (13.103)

the displacements as
u = NI(ξ) uI(t) (13.104)

the incremental displacements as

∆u = NI(ξ) ∆uI(t) (13.105)

and the virtual displacements as

δu = NI(ξ) δuI (13.106)

Time dependence is included in the nodal parameters for the current position and
displacements.

4Consult the book by Zienkiewicz, Taylor & Zhu[29, 30] for details.
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13.10 Consistent and Lumped Mass Matrices

Using the above approximations we may discretize the terms in the variational equation
for each element. Accordingly, the first term becomes∫

Ωe

δuT ρ v̇ dv = (δuT )I
∫

Ωe

NI ρNJ dv 1t ẍ
J (13.107)

where summation convention is implied for the a and b indices. The integral for the
shape functions defines the consistent mass matrix for the analysis which may be writ-
ten as

MIJ =

∫
Ωe

NI ρNJ dv 1t (13.108)

For procedures to construct a lumped mass see either [30, Appendix 8] or [11].

13.11 Stress Divergence Matrix

The stress divergence term may be expanded by noting symmetry of σ to give∫
Ωe

tr [∇ (δu)σ] dv =

∫
Ωe

tr [δεσ] dv (13.109)

where δε is given by

δε =
1

2

[
∇ (δu) + (∇ (δu))T

]
(13.110)

Introducing matrix notation for σ and δε as

σ =
[
σ11 σ22 σ33 σ12 σ23 σ31

]T
(13.111)

and
δε =

[
δε11 δε22 δε33 2 δε12 2 δε23 2 δε31

]T
(13.112)

the stress divergence term may be written as∫
Ωe

δεT σ dv (13.113)

Expressing the δε in terms of the virtual displacements gives

δε =
[
∂δu1
∂x1

∂δu2
∂x2

∂δu3
∂x3

∂δu1
∂x2

+ ∂δu2
∂x1

∂δu2
∂x3

+ ∂δu3
∂x2

∂δu3
∂x1

+ ∂δu1
∂x3

]T
(13.114)

Using the interpolations for the virtual displacements in each element leads to the
matrix relation
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δε =


NI,1 0 0

0 NI,2 0
0 0 NI,3

NI,2 NI,1 0
0 NI,3 NI,2

NI,3 0 NI,1


δuI1δuI2
δuI3

 = BI δu
I (13.115)

In the above, the notation

NI,1 =
∂NI

∂x1

(13.116)

has been used for conciseness. The BI matrix describes the transformation from the
virtual displacements, δuI to the δε. The stress divergence term may now be written
as ∫

Ωe

δεT σ dv = (δuI)T
∫

Ωe

BT
I σ dv (13.117)

The above expressions are identical to results obtained for the linear problem except
that all calculations are based upon coordinates in the current (deformed) configura-
tion.

13.12 Geometric stiffness

The geometric stiffness for a finite element formulation is obtained by substituting the
interpolations described above into the geometric term for a single element. Accord-
ingly,∫

Ωe

tr (∇ (δu)σ∇ (∆u)T ) dv = (δuI)T
∫

Ωe

tr (∇NT
I σ∇NJ) dv∆uJ (13.118)

Evaluation of the right hand side of the above expression leads to the geometric stiffness
matrix which is given by

(Kg)IJ =

∫
Ωe

tr (∇NT
I σ∇NJ) dv 1t (13.119)

In component form the expression for the geometric stiffness is given as

(Kg
ij)IJ =

∫
Ωe

∂ NI

∂ xk
σkl

∂ NJ

∂ xl
dv δij (13.120)
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13.13 Material tangent matrix - standard B matrix

formulation

The material tangent matrix is deduced from the term∫
Ωe

tr (∇ (δu) ∆σ) dv =

∫
Ωe

tr (δε cI ∆ε) dv (13.121)

which is evaluated for a typical element. In matrix notation the right hand side becomes∫
Ωe

tr (δε cI ∆ε) dv =

∫
Ωe

δεT D ∆ε dv (13.122)

where D denotes the material moduli in the current configuration given in the matrix
representation introduced for the linear problem. Furthermore, substitution of the
finite element interpolations into the incremental strain term leads to the result in
matrix form

∆ε = BJ ∆uJ (13.123)

Thus, the material tangent is computed from∫
Ωe

δεT D ∆ε dv = (δuI)T
∫

Ωe

BT
I D BJ dv∆uJ (13.124)

and the material tangent matrix is given by

(Km)IJ =

∫
Ωe

BT
I D BJ dv (13.125)

which again is identical to the linear problem except that all steps are performed for
the current configuration.

13.14 Loading terms

The right hand side terms may be discretized by introducing the interpolations for the
virtual displacement. Accordingly, the body force may be given as∫

Ωe

δuTρbm dv = (δuI)T
∫

Ωe

NI ρbm dv (13.126)

and the boundary loading is∫
∂Ωe

δuT t̄ds = (δuI)T
∫
∂Ωet

NI t̄ ds (13.127)



CHAPTER 13. FINITE DEFORMATION 122

13.15 Basic finite element formulation

Accumulating all terms together, the variational equation may be written as∑
e

(δuI)T
[

MIJ ẍJ +

∫
Ωe

BT
I σ dv − fI

]
= 0 (13.128)

where fI is the sum of the body and surface traction terms.

fI =

∫
Ωe

NI ρbm dv +

∫
∂Ωet

NI t̄ ds (13.129)

Since δuI is arbitrary, the variational equation leads to the discrete balance of linear
momentum equations ∑

e

[
MIJ ẍJ +

∫
Ωe

BT
I σ dv − fI

]
= 0 (13.130)

which may be written in the compact matrix form

M ẍ + N(σ) = f (13.131)

where N(σ) is the stress divergence vector.

Solution of this set of equations together with satisfying the material constitution and
the displacement boundary conditions, yields the solution to a problem. A common
solution procedure is to use a Newton type solution method and solve a sequence of
linear problems. Accordingly, in a Newton Method we write the momentum equation
as

R = f −M ẍ−N(σ) = 0 (13.132)

A linearization of this set of equations gives the result

M ∆ü + Kt ∆u = R (13.133)

where
Kt = Km + Kg (13.134)

The above description is for a standard displacement type formulation. We refer to the
method as the standard B-matrix formulation.

13.16 Mixed formulation

In the mixed formulation used, a modified deformation gradient, (as described in [20]),
is used. The mixed formulation is used to permit solution of incompressible and nearly
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incompressible materials, as well as, compressible solutions which can be treated by
a standard B matrix formulations. Thus, the modified deformation gradient is based
upon a separation into volumetric and deviatoric parts as

F = Fvol Fdev (13.135)

where Fvol measures volumetric part and Fdev the deviatoric part of deformation. Since
detF measures the volumetric part we have

J = detF = detFvol detFdev (13.136)

which leads to the result
detFvol = J (13.137)

and
detFdev = 1 (13.138)

This may be accomplished by using

Fvol = J
1
3 1 (13.139)

for the volumetric part which gives

Fdev = J−1/3 F (13.140)

for the deviatoric part. The modified deformation gradient may then be constructed
by replacing the volumetric part by a mixed treatment. Accordingly, we define

F̃ =

(
θ

J

)1/3

F (13.141)

as the modified tensor. In the above expression, θ is a mixed representation for the de-
terminant of the deformation gradient. The modified right Cauchy-Green deformation
tensor is then computed from

C̃ = F̃T F̃ (13.142)

with similar definitions for Ẽ and b̃. The virtual modified deformation gradient is now
given by

δF̃ =

[
δθ

3 θ
1t + (∇δu− 1

3
div δu 1t)

]
F̃ (13.143)

A three field variational statement of the problem is completed by adding to the motion,
φ, and mixed determinant of the modified deformation gradient, θ, the mixed pressure,
p.

Π(u, θ, p) =

∫
Ω0

W
(
C̃(u, θ)

)
dV +

∫
Ω0

p (J − θ) dV (13.144)
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−
∫

Ω0

uT ρ0bm dV −
∫
∂Ω0t

uT t̄0 dS (13.145)

A variational equation including the effects of inertia may be constructed following
steps above and written as (see, [20])∫

Ω

δuTρ v̇ dv +

∫
Ω

∇δuT (σ̃dev + p1t) dv =

∫
Ω

δuTρbm dv +

∫
∂Ω

δuT t̄ ds (13.146)

for the linear momentum equation,∫
Ω

δθ(
trσ̃

3θ
− p

J
) dv = 0 (13.147)

for the relationship between the mixed pressure and the trace of the stress, and∫
Ω

δp (1− θ

J
) dv = 0 (13.148)

for the relation between the mixed and the determinant of the deformation gradient.
In the above, the modified Cauchy stress, σ̃, and the modified Kirchhoff stress, τ̃ , are
related to the modified second Piola-Kirchhoff stress by

J σ̃ = τ̃ = F̃ S̃ F̃T (13.149)

where S̃ is computed using C̃ as the deformation measure. The deviatoric part of the
stress, σ̃dev, is then computed using

σ̃dev = (I− 1

3
1t 1

T
t ) σ̃ = Idev σ̃ (13.150)

where I is a rank four identity tensor. The spherical part of the stress is given by the
mixed pressure, p, not trσ̃. The mixed pressure p is computed from trσ̃ using the
variational equation given above. Thus, the stress in this approach is computed using

σ = p1t + σ̃dev (13.151)

A finite element implementation for the above may be deduced using the isoparametric
interpolations given above for X, x, u, and δu. In addition interpolations for θ, δθ, p,
and δp must be given. In the low order elements the above functions are all taken as
constant in each element. Discretization of the modified momentum equation gives

M ẍ + N(σ̃dev + p1t) = F (13.152)

where the stress divergence vector for a typical node is given by

NI(σ̃dev + p1t) =
∑
e

∫
Ωe

BT
I (σ̃dev + p1t) dv (13.153)
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The pressure, p, appearing in the above relations may be obtained by first computing
the mixed volume, θ, using the third variational equation. Accordingly, for each ele-
ment (with the constant interpolations for θ and p) integration of the third variational
equation yields a solution

θ =
Ωe

Ωe0

(13.154)

for each element, where Ωe is the volume of the element in the current configuration
and Ωe0 is the volume in the undeformed reference configuration. The θ may now be
used to define the modified deformation quantity and the modified stress state, σ̃ may
be determined in each element. Finally, use of the second variational equation yields
the mixed pressure as

p =
1

Ωe0

∫
Ωe

trσ̃

3 θ
dv (13.155)

in each element. This may be combined with the deviatoric part of σ̃ to define the
mixed stress, σ, in each element. A tangent matrix may be computed for the mixed
formulation. Details for the construction are included in [20].
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Appendix A

Heat Transfer Element

This appendix contains a FEAP user subprogram to formulate the finite element arrays
needed to solve two-dimensional plane or axisymmetric linear heat transfer problems.
Table A.1 is the interface program to FEAP and Table A.2 is the subprogram to input
material parameters for the type of region, thermal conductivity, heat capacity, and
density for an isotropic Fourier material model. Table A.3 presents the routine used to
compute the element tangent and residual arrays and Tables A.4 and A.8 the routines
to output numerical values and nodal projections for the heat flux. Nodal projections
of the heat flux may then be plotted in graphics mode by FEAP. Table A.6 defines the
Fourier model and Table A.7 a routine to compute coordinates in elements. The heat
capacity array has been coded separtately in (Table A.8) to permit solution of general
linear eigenproblem.
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subroutine elmt02(d,ul,xl,ix,tl,s,r,ndf,ndm,nst,isw)

c Two dimensional heat transfer element

implicit none

include ’cdata.h’

include ’eldata.h’

include ’prstrs.h’

include ’comblk.h’

integer ndf,ndm,nst,isw, ix(*)

real*8 d(*),ul(ndf,*),xl(ndm,*),tl(*),s(nst,*),r(*),shp(3,9)

c Input material properties

if(isw.eq.1) then

call inpt02(d)

c Check of mesh if desired (chec)

elseif(isw.eq.2) then

call ckisop(ix,xl,shp,ndm)

c Compute conductivity (stiffness) matrix

elseif(isw.eq.3 .or. isw.eq.6) then

call stif02(d,ul,xl,ix,s,r,ndf,ndm,nst)

c Compute heat flux and print at center of element

elseif(isw.eq.4) then

call strs02(d,ul,xl,ix,ndf,ndm)

c Compute heat capacity (mass) matrix

elseif(isw.eq.5) then

call capa02(d,xl,ix,s,r,ndf,ndm,nst)

c Compute nodal heat flux for print/plots

elseif(isw.eq.8) then

call stcn02(ix,d,xl,ul,shp,hr(nph),hr(nph+numnp),

& ndf,ndm,nel,numnp)

endif

end

Table A.1: Element Routine for Heat Transfer
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subroutine inpt02(d)

implicit none

include ’iofile.h’

logical errck, tinput, pcomp, rflag

character name*15, wlab(2)*6

real*8 d(*),td(1)

data wlab/’ Plane’,’Axisym’/

c Input material parameters

d(4) = 1.d0

rflag = .true.

do while(rflag)

errck = tinput(name,1,td,1)

if(pcomp(name,’cond’,4)) then

d(1) = td(1)

elseif(pcomp(name,’spec’,4)) then

d(2) = td(1)

elseif(pcomp(name,’dens’,4)) then

d(3) = td(1)

elseif(pcomp(name,’plan’,4)) then

d(4) = 1.d0

elseif(pcomp(name,’axis’,4)) then

d(4) = 2.d0

elseif(pcomp(name,’ ’,4)) then

rflag = .false.

endif

end do ! while

if(ior.lt.0) write(*,2000) d(1),d(2),d(3),wlab(int(d(4)))

write(iow,2000) d(1),d(2),d(3),wlab(int(d(4)))

d(2) = d(2)*d(3)

d(5) = 2 ! number of quadrature points/direction

2000 format(5x,’Linear Heat Conduction Element’//

& 5x,’Conductivity ’,e12.5/5x,’Specific Heat’,e12.5/

& 5x,’Density ’,e12.5/5x,a6,’ Analysis’)

end

Table A.2: Input Routine for Heat Transfer Element
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subroutine stif02(d,ul,xl,ix,s,r,ndf,ndm,nst)

implicit none

include ’eldata.h’

include ’eltran.h’

integer ndf,ndm,nst, i,j, l,lint, ix(*)

real*8 xsj, a1,a2,a3, tdot, radi02

real*8 d(*),ul(ndf,*),xl(ndm,*),s(nst,*),r(ndf,*)

real*8 shp(3,9),sg(3,9), gradt(2),flux(2)

c Compute tangent matrix (linear), and residual

l = nint(d(5))

call int2d(l,lint,sg)

do l = 1,lint

call shp2d(sg(1,l),xl,shp,xsj,ndm,nel,ix,.false.)

call flux02(d,shp,ul,ndf,nel, gradt,flux,tdot)

if(nint(d(4)).eq.2) xsj = xsj*radi02(shp,xl,ndm,nel)

do j = 0,nel-1

a1 = d(1)*shp(1,j+1)*xsj*sg(3,l)

a2 = d(1)*shp(2,j+1)*xsj*sg(3,l)

a3 = d(2)*shp(3,j+1)*xsj*sg(3,l)

r(1,j+1) = r(1,j+1) - a1*gradt(1) - a2*gradt(2) - a3*tdot

do i = 0,nel-1

s(i*ndf+1,j*ndf+1) = s(i*ndf+1,j*ndf+1)

& + (a1*shp(1,i+1) + a2*shp(2,i+1))*ctan(1)

& + a3*shp(3,i+1)*ctan(2)

end do

end do

end do

end

Table A.3: Stiffness for Heat Transfer Element
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subroutine strs02(d,ul,xl,ix,ndf,ndm)

implicit none

include ’bdata.h’

include ’cdata.h’

include ’eldata.h’

include ’fdata.h’

include ’iofile.h’

integer ndf,ndm, ix(*)

real*8 xx,yy, xsj, tdot, radi02

real*8 d(*),ul(ndf,*),xl(ndm,*),gradt(2),flux(2),shp(3,9)

real*8 ss0(2)

data ss0 / 2*0.0d0 /

c Compute thermal gradient and heat flux

call shp2d(ss0,xl,shp,xsj,ndm,nel,ix,.false.)

call flux02(d,shp,ul,ndf,nel, gradt,flux,tdot)

mct = mct - 1

if(mct.le.0) then

write(iow,2001) o,head

if(ior.lt.0 .and. pfr) write(*,2001) o,head

mct = 50

endif

xx = radi02(shp,xl(1,1),ndm,nel)

yy = radi02(shp,xl(2,1),ndm,nel)

write(iow,2002) n,ma,xx,yy,flux,gradt

if(ior.lt.0 .and. pfr) write(*,2002) n,ma,xx,yy,flux,gradt

2001 format(a1,20a4//5x,’element flux’//’ elmt matl 1-coord 2-coord’

& ,’ 1-flux 2-flux 1-grad 2-grad’)

2002 format(2i5,2f9.3,4e12.3)

end

Table A.4: Output Routine for Heat Transfer Element
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subroutine stcn02(ix,d,xl,ul,shp,dt,st,ndf,ndm,nel,numnp)

implicit none

integer ndf,ndm,nel,numnp, j,l,ll,lint, ix(*)

real*8 xsj,xg, tdot

real*8 dt(numnp),st(numnp,*),xl(ndm,*),shp(3,4),d(*)

real*8 gradt(2),flux(2),ul(ndf,*),sg(3,9)

c Lumped projection routine

l = max(2,nint(d(5)))

call int2d(l,lint,sg)

do l = 1,lint

call shp2d(sg(1,l),xl,shp,xsj,ndm,nel,ix,.false.)

call flux02(d,shp,ul,ndf,nel, gradt,flux,tdot)

xsj = xsj*sg(3,l)

do j = 1,nel

ll = iabs(ix(j))

if(ll.gt.0) then

xg = xsj*shp(3,j)

dt(ll) = dt(ll) + xg

st(ll,1) = st(ll,1) + flux(1)*xg

st(ll,2) = st(ll,2) + flux(2)*xg

endif

end do

end do

end

Table A.5: Flux Projection Routine for Heat Transfer Element



APPENDIX A. HEAT TRANSFER ELEMENT 135

subroutine flux02(d,shp,ul,ndf,nel, gradt,flux,tdot)

implicit none

include ’cdata.h’

integer ndf,nel, i

real*8 tdot

real*8 d(*),shp(3,*),ul(ndf,nen,*),gradt(*),flux(*)

gradt(1) = 0.0d0

gradt(2) = 0.0d0

tdot = 0.0d0

do i = 1,nel

gradt(1) = gradt(1) + shp(1,i)*ul(1,i,1)

gradt(2) = gradt(2) + shp(2,i)*ul(1,i,1)

tdot = tdot + shp(3,i)*ul(1,i,4)

end do

flux(1) = -d(1)*gradt(1)

flux(2) = -d(1)*gradt(2)

end

Table A.6: Thermal Gradient and Flux

function radi02(shp,xl,ndm,nel)

implicit none

integer i,ndm,nel

real*8 radi02, shp(3,*), xl(ndm,*)

c Compute element coordinate value

radi02 = 0.d0

do i = 1,nel

radi02 = radi02 + shp(3,i)*xl(1,i)

end do

end

Table A.7: Coordinate in Element
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subroutine capa02(d,xl,ix,s,r,ndf,ndm,nst)

implicit none

include ’eldata.h’

integer ndf,ndm,nst, i,j, l,lint, ix(*)

real*8 xsj, shj, radi02

real*8 d(*),xl(ndm,*),s(nst,*),r(ndf,*), shp(3,9),sg(3,9)

c Compute heat capacity matrix

l = nint(d(5))

call int2d(l,lint,sg)

do l = 1,lint

call shp2d(sg(1,l),xl,shp,xsj,ndm,nel,ix,.false.)

xsj = xsj*sg(3,l)

if(nint(d(4)).eq.2) xsj = xsj*radi02(shp,xl,ndm,nel)

do j = 0,nel-1

shj = d(2)*shp(3,j+1)*xsj

r(1,j+1) = r(1,j+1) + shj

do i = 0,nel-1

s(i*ndf+1,j*ndf+1) = s(i*ndf+1,j*ndf+1) + shj*shp(3,i+1)

end do

end do

end do

end

Table A.8: Heat Capacity Routine for Heat Transfer Element



Appendix B

Solid Elements

B.1 Displacement elements

Displacement elements are computed using the virtual work equation written in terms
of assumed element displacments. All elements for continuum (solids) analysis use
isoparametric displacement fields expressed as

u =
∑
I

NI(ξ) uI (B.1)

where NI(ξ) are shape functions and uI are nodal displacements. Computation of the
derivatives appearing in the strain-displacement matrices is performed as described in
Appendix D.

The strain-displacement matrices for each node are given by:

1. Three dimensional problems

ε =
[
εx εy εz γxy γyz γzx

]T
(B.2)

BI =


NI,x 0 0

0 NI,y 0
0 0 NI,z

NI,y NI,x 0
0 NI,z NI,y

NI,z NI,x

 (B.3)

2. Two dimensional plane problems

ε =
[
εx εy εz γxy

]T
(B.4)
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BI =


NI,x 0

0 NI,y

0 0
NI,y NI,x

 (B.5)

3. Two dimensional axisymmetric

ε =
[
εr εz εθ γrz

]T
(B.6)

BI =


NI,r 0

0 NI,z
NI

r
0

NI,z NI,r

 (B.7)



Appendix C

Structural Elements

C.1 Truss elements

The current truss element has options for small and finite deformations. Each element
has two nodes, with nodal parameters x̃1 and x̃2 to define reference positions of nodes
and ũ1 and ũ2 to define displacements. The single element force is axial N with
corresponing axial strain εs.

C.2 Frame elements

The current frame elements permit analysis of small displacement, second order dis-
placement, and finite displacement theories. Most of the elements use a two node
element with linear displacement interpolations in each element. Some use cubic dis-
placements for better consistency.

C.2.1 Small displacement element

The strain-displacement relations for the small-displacement theory for plane bending
in the x1 − x2 global coordinate frame are given as

ue1(z1, z2) = u1(z1)− z2 θ(z1)

ue2(z1, z2) = u2(z1) (C.1)

where z1 and z2 are coordinates and u1, u2 and θ are displacement functions along the
z1-axis of the frame element.
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These displacements give non-zero strains on each cross section expressed by

ε =

{
ε1
γ12

}
=

{
ε− z2κ
γ

}
=

{
u1,1 − z2θ,1
u2, 1− θ

}
(C.2)

where ε is the axial strain, κ the change in curvature and γ is the transverse shearing
strain for the cross section.

Two types of material constitution are considered:

1. Resultant theory where
N
M
V

 =

 EA 0 0
0 EI 0
0 0 kGA

 
ε
κ
γ

 (C.3)

2. Integration on the cross section where{
N
M

}
=

∫
A

{
1
z2

}
σ1(ε− z2κ) dA (C.4)

C.3 Plate elements

C.4 Shell elements



Appendix D

Isoparametric Shape Functions for
Elements

D.1 Conventional Representation

The shape functions for the bilinear quadrilateral isoparametric element are given by

NI(ξ) =
1

4
(1 + ξI1 ξ1) (1 + ξI2 ξ2) (D.1)

Using these shape functions, the derivatives with respect to the natural coordinates
are computed to be

∂NI

∂ξ1

=
1

4
ξI1 (1 + ξI2 ξ2) (D.2)

and
∂NI

∂ξ2

=
1

4
ξI2 (1 + ξI1 ξ1) (D.3)

Using the shape functions, the interpolation for the global Cartesian coordinates may
be expressed in each element as

x = NI(ξ) xI (D.4)

where xI are the values of coordinates at the nodes of the element and the repeated
index I implies summation over the 4 nodes describing the quadrilateral element.

The derivatives of the shape functions with respect to the global coordinates, x, are
computed using the chain rule. Accordingly,

∂NI

∂ξα
=

∂xi
∂ξα

∂NI

∂xi
(D.5)
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which may be written in direct (matrix) notation as

∇ξNI = ∇xNI J (D.6)

When solved for the derivatives with respect to the global coordinates we obtain

∇xNI = ∇ξNI J−1 (D.7)

In the above

∇xNI =

[∂NI

∂x1
∂NI

∂x2

]
(D.8)

∇ξNI =

[
∂NI

∂ξ1
∂NI

∂ξ2

]
(D.9)

and

J(ξ) =

[
∂x1
∂ξ1

∂x1
∂ξ2

∂x2
∂ξ1

∂x2
∂ξ2

]
(D.10)

Using the shape functions D.1 for the 4-node element, the terms in J(ξ) have the
structure

Jiα =
∂xi
∂ξα

=
1

4

4∑
I=1

xIi ξ
I
α +

1

4

4∑
I=1

xIi ξ
I
α ξ

I
β ξβ (D.11)

where1

β = mod(α, 2) + 1 (D.12)

The constant part of J is evaluated at the point ξ = 0 (commonly named the element
center), and is given by

∂NI

∂ξα
=

1

4
ξIα (D.13)

thus

Jiα(0) =
∂xi
∂ξα

∣∣∣∣
ξ=0

=
1

4

4∑
I=1

xIi ξ
I
α (D.14)

describe the derivatives of the coordinates at the element center. We denote the jaco-
bian at the center as J0, that is

J0 = J(0) (D.15)

The global derivatives of the shape functions at the element center become

∇xNI(0) = ∇xiNI(0) J−1
0 (D.16)

1Note that mod(i, j) = i − i
j j where i

j is evaluated in integer arithmetic. Thus, mod(1, 2) and

mod(3, 2) are both evaluated to be 1, while mod(2, 2) and mod(4, 2) are 0.
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In subsequent developments we use the notation

biI =
∂NI

∂xi

∣∣∣∣
ξ=0

(D.17)

to denote the derivatives of the shape functions at the element center.

In subsequent descriptions we will define

∆ Jiαβ =
1

4

4∑
I=1

xIi ξ
I
α ξ

I
β =

1

4

4∑
I=1

xIi ξ
I
1 ξ

I
2 = ∆ Ji (D.18)

which is the coefficient to the spatially varying part of the jacobian transformation.
That is, the jacobian determinant may be expressed as[

J11(ξ) J12(ξ)
J21(ξ) J22(ξ)

]
=

[
(J0)11 (J0)21

(J0)21 (J0)22

]
+

[
∆J112 ξ2 ∆J121 ξ1

∆J212 ξ2 ∆J221 ξ1

]
(D.19)

which in matrix notation may be written as

J(ξ) = J0 + ∆J Ξ (D.20)

where

Ξ =

[
ξ2 0
0 ξ1

]
(D.21)

and

∆J =

[
∆J1 ∆J1

∆J2 ∆J2

]
(D.22)

D.2 Alternative Representation in Two Dimensions

An alternative representation for the shape functions has been proposed by Belytschko.
In the development of stabilized elements he introduced the representation

NI(ξ) =
1

4
δI +

2∑
i=1

biI (xi − x0
i ) + ΓI h(ξ) (D.23)

where xi are the element global cartesian coordinates,

x0
i =

4∑
I=1

xIi NI(0) =
1

4
(x1

i + x2
i + x3

i + x4
i ) (D.24)

are the values of the global coordinates at the element center,

h(ξ) = ξ1 ξ2 (D.25)
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and δI and ΓI are constant parameters associated with node I. These parameters may
be evaluated by defining the shape functions at each node and using the fact that

NI(ξJ) = δIJ (D.26)

where δIJ is the Kronecker delta function for the nodes. Evaluating the alternative
shape function expression at each node gives

NI(ξJ) =
1

4
δI +

2∑
i=1

biI (xJi − x0
i ) + ΓI h(ξJ) (D.27)

Introducing the notation
1T =

[
1 1 1 1

]
(D.28)

hT =
[
1 −1 1 −1

]
(D.29)

xTi =
[
x1
i x2

i x3
i x4

i

]
(D.30)

bTi =
[
bi1 bi2 bi3 bi4

]
(D.31)

and the parameter vectors
δT =

[
δ1 δ2 δ3 δ4

]
(D.32)

ΓT =
[
Γ1 Γ2 Γ3 Γ4

]
(D.33)

The shape functions at the nodes may be written in the matrix form

I =
1

4
δ 1T +

2∑
i=1

bi (xi − x0
i 1)T + Γ hT (D.34)

Note that the rows in the expression are associated with the I in the NI shape functions,
while the columns are associated with the J where the ξJ are evaluated. The I is a
4 × 4 identity matrix for the element. Using this form, the parameters δ and Γ may
be easily computed. First by multiplying (from the right) by 1, we obtain

I 1 = 1 = δ (D.35)

In obtaining this result we note that

1T 1 = 4 (D.36)

and
xTi 1 = 4x0

i (D.37)

which gives
(xi − x0

i 1)T 1 = 0 (D.38)

Finally, we note that
hT 1 = 0 (D.39)
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Next by multiplying (again from the right) by h, we get

hT h = 4 (D.40)

I h = h =
2∑
i=1

xhi bi + 4 Γ (D.41)

where2

xhi = xTi h (D.42)

Thus, the parameters for Γ are computed as

Γ =
1

4
[h −

2∑
i=1

xhi bi] (D.43)

It remains to compute the bi.

D.3 Derivatives of Alternative Formulation

Using the alternative expression for the shape functions, the derivatives with respect
to the global coordinates, xi, are given by

∂NI

∂xi
= biI + ΓI

∂h

∂xi
(D.44)

where the biI are constant over the entire element and are computed by the conventional
expressions at the center of the element. The derivatives of the function h may also be
computed using the chain rule and are given by

∇x h = ∇ξ hJ−1 (D.45)

For the specific functional expression for h, the gradient with respect to the natural
coordinates is given by

∇ξ h =

[
ξ2

ξ1

]
(D.46)

Furthermore, the inverse for the jacobian matrix is given by

J−1 =
1

j(ξ)

[
∂x2
∂ξ2

−∂x1
∂ξ2

−∂x2
∂ξ1

∂x1
∂ξ1

]
(D.47)

2The factor xhi is sometimes called an hour glass shape, and when the coordinate, x, is replaced
by the displacement, u, the factor uhi , defines the magnitude of the hour glass mode.
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where j(ξ) is the determinant of the jacobian transformation matrix, J. Recall that the
derivative of a global coordinate with respect to a natural coordinate has a constant
and a linear part. For the specific form of the h(ξ) function the product of the linear
part vanishes and the relationship for the gradient simplifies to

∇x h =
j0

j(ξ)
∇ξ hJ−1

0 (D.48)

where j0 is the value of the jacobian determinant evaluated at the element center. The
jacobian determinant at the center of the element is computed to be

j0 = (J0)11 (J0)22 − (J0)21 (J0)12 (D.49)

We note also that the jacobian determinant at any location in the element may be
expressed as

j(ξ) = j0 + j1 ξ1 + j2 ξ2 (D.50)

where
j1 = (J0)11 ∆ J22 − (J0)21 ∆ J12 (D.51)

j2 = ∆ J11 (J0)22 − ∆ J21 (J0)12 (D.52)

With the above definitions and

bI =

[
b1I

b2I

]
(D.53)

the gradient of the displacement may be written as

∇x u = ∇xNI uI =

[
bI +

j0

j(ξ)
∇ξ hJ−1

0 ΓI

]
uI (D.54)

The structure of this representation is useful knowledge when we consider the construc-
tion of the enhanced part of the strains in Chapter 8.



Appendix E

Properties for J2 plasticity models

The solution of the J2 plasticity model leads to derivatives of the yield and loading
functions in the form

∂f

∂Σ
= n (E.1)

where

n =
Σ

‖ Σ ‖
(E.2)

and
Σ = s − α (E.3)

We note that n has the properties

1T n = 0 ; nT n = 1 (E.4)

In the derivation of the tangent the derivative of n leads to

∂2f

∂Σ ∂Σ
=

∂n

∂Σ
=

1

‖ Σ ‖
(1 − n nT ) (E.5)

which appears in several location in the tangent matrices. The inversion of the tangent
matrices may be simplified using the Sherman-Morrison-Woodbury formula[6] which
gives

(A + U VT )−1 = A−1 − A−1 U W VT A−1 (E.6)

where
W = (I + VT A−1 U)−1 (E.7)

In the above A is an ntimesn matrix, U,V are n× k matrices, where k ≤ n, and W
is a k × k matrix. The inverse may be proved by multiplying the results together to
recover the identity matrix. In the case of the deviatoric model A is diagonal and U

147



APPENDIX E. PROPERTIES FOR J2 PLASTICITY MODELS 148

and V are proportional to n which is rank 1, thus leading to a scalar W (i.e., a 1× 1
matrix).

There are some properties which need to be noted:

n nT (n nT ) = n nT (E.8)

(I − n nT ) n = 0 (E.9)

and
(I − n nT ) (I − n nT ) = I − n nT (E.10)

E.1 Example 1

Consider the matrix
H1 = A I + B n nT (E.11)

Using the Sherman-Morrison-Woodward formula the inverse is given by noting that U
is equal to Bn and V is equal to n, thus

H−1
1 =

1

A
I − (

1

A
I) (B n)W nT (

1

A
I) (E.12)

where

W = (1 +
B

A
)−1 =

A

A + B
(E.13)

The above simplifies to

H−1
1 =

1

A
(I − B

A+B
n nT ) (E.14)

E.2 Example 2

Consider the matrix
H2 = C I + D (I − n nT ) (E.15)

which may be rewritten as

H2 = (C + D) I − D n nT (E.16)

for which the solution from example 1 gives

H−1
2 =

1

C + D
(I +

D

C
n nT ) (E.17)
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Recollecting into the original type of matrices gives

H−1
2 =

1

C
[I − D

C + D
(I − n nT )] (E.18)

A slightly more general form for an inverse results in considering the case with kinematic
hardening. In this case we encounter a matrix of the form

H =

[
A I +B (I− n nT ) C (I− n nT )
D (I− n nT ) E I + F (I− n nT )

]
(E.19)

The inverse may be written as

H−1 =

[
a I + b (I− n nT ) c (I− n nT )
d (I− n nT ) e I + f (I− n nT )

]
(E.20)

where

a =
1

A
; e =

1

E
(E.21)

and the remaining coefficients obtained by solving the small matrix problem[
A + B C

D E + F

] [
b c
d f

]
= −

[
B C
D F

] [
a 0
0 e

]
(E.22)

The solution to (A.11b) is given by[
b c
d f

]
= − 1

G

[
E + F −C
−D A + B

] [
B C
D F

] [
a 0
0 e

]
(E.23)

where
G = (A + B) (E + F ) − C D (E.24)

The inverse may be proved by multiplying the two matrices together and show that
the result is an identity matrix.



Appendix F

Matrix Form for Equations of Solids

F.1 Stress and Strain

Generally the equations of mechanics are expressed using tensor forms. However, it
is traditional for finite element calculations to be performed using matrix forms. This
appendix summarizes the transformation of quantities from tensor to matrix form. We
begin by writing the forms for stress and strain in a matrix form involving both 9 and 6-
component forms. The advantage of using the 9-component form is not apparent until
considering constitutive equations where direct use of the transformation between the
two forms avoids possibility of errors by factors of two.

First we show the transformation for the stress and strain tensors into their matrix
representations. Here, for example, the components of the stress in tensor form may
be given as

σij =

 σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

 (F.1)

and reordered into the 9-component vector as

σ =
[
σ11 σ22 σ33 σ12 σ21 σ23 σ32 σ31 σ13

]T
(F.2)

Conservation of angular momentum requires the stress to be symmetric, thus satisfying

σij = σji (F.3)

This permits the independent components of stress to be written in a 6-component
matrix form as

σ =
[
σ11 σ22 σ33 σ12 σ23 σ31

]T
(F.4)

In the sequel we shall use an underscore to indicate a 9-component form and omit the
underscore for the 6-component form.
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The 6-component form may be related to the 9-component form using a simple pro-
jector matrix, P, defined by

P =
1

2



2 0 0 0 0 0
0 2 0 0 0 0
0 0 2 0 0 0
0 0 0 1 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 1


(F.5)

giving
σ = PT σ (F.6)

In a similar manner we can write the components of the strain tensor as

εij =

 ε11 ε12 ε13

ε21 ε22 ε23

ε31 ε32 ε33

 (F.7)

and reordered into the 9-component vector as

ε =
[
ε11 ε22 ε33 ε12 ε21 ε23 ε32 ε31 ε13

]T
(F.8)

Strain-displacement relations give symmetry of strain as

εij = εji (F.9)

This permits the independent components of strain to be written in a 6-component
matrix form as

ε =
[
ε11 ε22 ε33 γ12 γ23 γ31

]T
(F.10)

where γiij are the engineering components of the shearing strain given by

γij = 2 εij (F.11)

F.2 Split into Deviatoric and Spherical Components

Using the matrix form we can write the split of stress and strain in their deviator and
spherical components as

σ = s + m p (F.12)
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and

ε = e +
1

3
m εv (F.13)

where p and εv are the pressure and volume change, respectively, given by

p =
1

3
mT σ (F.14)

and
εv = mT ε (F.15)

The matrix m is a trace projector defined by

m =
[

1 1 1 0 0 0 0 0 0
]

(F.16)

The splits may also be written in 6-component form as

σ = s + m p (F.17)

and

ε = e +
1

3
m εv (F.18)

where
s =

[
s11 s22 s33 s12 s23 s31

]T
(F.19)

and
e =

[
e11 e22 e33 2 e12 2 e23 2 e31

]T
(F.20)

These also are related to their 9-component form using the P projector and may be
written as

s = PT s and e = P e (F.21)

The 6-component projector m is likewise related to its 9-component counterpart through

m = PT m =
[

1 1 1 0 0 0
]T

(F.22)

Using the above matrix forms we can obtain expressions for the deviatoric stress and
strain matrices in terms of the full stress and strain values. Accordingly, for the stress
we have the two relations

σ = s +
1

3
m mTσ (F.23)

and

σ = s +
1

3
m mTσ (F.24)

which solve to give

s = σ − 1

3
m mTσ =

[
I− 1

3
m mT

]
σ (F.25)
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and

s = σ − 1

3
m mTσ =

[
I− 1

3
m mT

]
σ (F.26)

where I and I are identity matrices of size 9 and 6, respectively. We define the two
deviatoric projectors as

Idev = I− 1

3
m mT and Idev = I− 1

3
m mT (F.27)

Similarly for strains we have the deviatoric relations

e = ε− 1

3
m mTε = Idev ε (F.28)

and

e = ε− 1

3
m mTε = Idev ε (F.29)

F.3 Linear Elastic Constitutive Equations

Let us now consider the relations for linear elastic constitutive equations. In index
notation these are expressed as

σij = Cijkl εkl (F.30)

where Cijkl are the elastic moduli and possess the minor symmetries

Cijkl = Cjikl = Cijlk (F.31)

From notions of hyperelasticity where stress is deduced from the stored energy function
W (ε) as

σij =
∂W

∂εij
(F.32)

the elastic constants also possess the major symmetries

Cijkl = Cklij (F.33)

We introduce the matrix forms for linear elasticity as

σ = D ε (F.34)

and
σ = D ε (F.35)

where D is a 9 × 9 matrix of elastic constants and D is a 6 × 6 matrix of elastic
constants.
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Construction of D follows directly from Cijkl using the index maps shown in Table F.1.

Applying the projector rules (which shows why we only need the two forms given above)
we obtain

σ = PTσ = PTD ε = PTD P ε = D ε (F.36)

which gives the relation between the two elastic moduli as

D = PTD P (F.37)

Entries in D use the index maps shown in Table F.2.

F.3.1 Example: Isotropic behavior

As an example we consider the isotropic linear elastic relations expressed in terms of
the Lamè parameters as

σij = λ δij εv + 2µ εij (F.38)

where in index form εv = εkk. Writing the relationship for the constitution as

σij = Cijkl εkl (F.39)

we obtain the tensor form of the elastic moduli as

Cijkl = λ δij δkl + 2µ Iijkl (F.40)

where Iijkl is the rank-4 tensor identity. This may be directly related to a matrix form
as

σ = D ε (F.41)

where
D = λm mT + 2µ I (F.42)

Form Index
Matrix 1 2 3 4 5 6 7 8 9
Tensor 11 22 33 12 21 23 32 31 13

Table F.1: Matrix and tensor index maps

Form Index
Matrix 1 2 3 4 5 6
Tensor 11 22 33 12 & 21 23 & 32 31 & 13

Table F.2: Matrix and tensor index maps
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Applying the projector as indicated in (F.37) we obtain the 6× 6 matrix form as

D = λm mT + 2µPTP (F.43)

where m is given by (F.22) and

PTP = I0 =
1

2


2 0 0 0 0 0
0 2 0 0 0 0
0 0 2 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 (F.44)

Thus we can also write (F.43) as

D = λm mT + 2µ I0 (F.45)

We note that this gives the shear equations with the correct factors to match the use
of the engineering components. While this may be obtained also by merely writing
(F.38) for each of the independent stress components and introducing the definition
for engineering shearing strain, the above process provides a direct way to construct
the constitutive model for a wide range of material behavior. One of which is classical
elasto-plasticity which we will consider later.
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