Investigation of the Performance of the New Orleans Flood Protection Systems in Hurricane Katrina on August 29, 2005

Volume II: Appendices

by

Final Report
July 31, 2006
This project was supported, in part, by the National Science Foundation under Grants No. CMS-0413327 and CMS-0611632. Any opinions, findings, and conclusions or recommendations expressed in this report are those of the author(s) and do not necessarily reflect the views of the Foundation.

This report contains the observations and findings of an investigation by an independent team of professional engineers and researchers with a wide array of expertise. The materials contained herein are the observations and professional opinions of these individuals, and do not necessarily reflect the opinions or endorsement of any other group or agency.

Note: Cover Image from http://www.photolibrary.fema.gov/photodata/original/15022.jpg
This report is dedicated to the people of the greater New Orleans region; to those that perished, to those that lost friends and loved ones, and to those that lost their homes, their businesses, their place of work, and their community.

New Orleans has now been flooded by hurricanes six times over the past century; in 1915, 1940, 1947, 1965, 1969 and 2005.

It must be our goal that it not be allowed to happen again.
Table of Contents

EXECUTIVE SUMMARY ... xix
The Investigation Team ... xxvi
Acknowledgements .. xxix

VOLUME I: MAIN TEXT AND EXECUTIVE SUMMARY

PART I – INTRODUCTION:
Chapter 1: Introduction and Overview
1.1 Introduction .. 1-1
1.2 Initial Post-Event Field Investigations .. 1-1
1.3 Current Studies and Investigations ... 1-2
1.4 Organization of This Report .. 1-3
1.5 Elevation Datum ... 1-5
1.6 References ... 1-5

PART II – TECHNICAL STUDIES:
Chapter 2: Overview of Hurricane Katrina and its Aftermath
2.1 Hurricane Katrina .. 2-1
2.2 Overview of the New Orleans Flood Protection Systems 2-1
2.3 Overview of Flood Protection System Performance During
 Hurricane Katrina ... 2-3
 2.3.1 Storm Surge During Hurricane Katrina 2-3
 2.3.2 Overview of the Performance of the Regional
 Flood Protection System .. 2-5
 2.3.3 Brief Comments on the Consequences of the Flooding
 of New Orleans ... 2-11
2.4 References ... 2-13

Chapter 3: Geology of the New Orleans Region
3.1 General Overview of the Geology of New Orleans 3-1
3.1.1 Introduction .. 3-1
3.1.2 Evolution of the Mississippi Delta beneath New Orleans 3-1
3.1.3 Pine Island Beach Trend 3-3
3.1.4 Interdistributary Zones 3-4
3.1.5 Paludal Environments 3-5
 3.1.5.1 Marshes ... 3-5
 3.1.5.2 Swamps .. 3-6
 3.1.5.3 Lacustrine Deposits 3-8
3.1.6 Recognition Keys for Depositional Environments 3-9
3.1.7 Holocene Geology of New Orleans 3-9
3.1.8 Faulting and Seismic Conditions 3-11
3.2 Geologic Conditions at 17th Street Canal Breach 3-11
 3.2.1 Introduction ... 3-11
 3.2.2 Interpretation of Geology from Auger borings 3-11
 3.2.3 Interpretation of Data from CPT Soundings 3-14
3.3 Geologic Conditions at London Avenue Canal (North) Breach 3-15
 3.3.1 Introduction ... 3-15
 3.3.2 Geology Beneath the Levees 3-15
3.4 Geologic Conditions at London Avenue (South) Canal Breach 3-16
 3.4.1 Introduction ... 3-16
 3.4.2 Geology Beneath the Levees 3-16
3.5 Geologic Conditions along the Inner Harbor Navigation Canal 3-17
 3.5.1 Introduction ... 3-17
 3.5.2 Geology ... 3-17
3.6 Paleontology and Age Dating 3-18
 3.6.1 Introduction ... 3-18
 3.6.2 Palynology .. 3-18
 3.6.3 Foraminifera 3-18
 3.6.4 Carbon 14 Dating 3-19
3.7 Mechanisms of Ground Settlement and Land Loss in Greater
 New Orleans .. 3-19
 3.7.1 Settlement Measurements 3-19
 3.7.2 Tectonic Subsidence 3-19
 3.7.3 Lystric Growth Faults 3-19
 3.7.4 Compaction of Surficial Organic Swamp and
Chapter 4: History of the New Orleans Flood Protection System 4-1

4.1 Origins of Lower New Orleans 4-1

4.2 Mississippi River Floods ... 4-2
 4.2.1 Mississippi River is the High Ground 4-2
 4.2.2 Flooding from the Mississippi River 4-2

4.3 The Mississippi River and Tributaries Project 1931-1972 4-6
 4.3.1 Dimensions of Navigation Channels Maintained by the
 Corps of Engineers on the Lower Mississippi River 4-8

4.4 Flooding of the New Orleans Area by Hurricanes 4-9

4.5 Flooding of New Orleans Caused by Intense Rain Storms 4-12

4.6 New Orleans Drainage Canals 4-13

4.7 City Adopts Aggressive Drainage System 4-16
 4.7.1 Pre-Katrina Conditions and Maintenance by the S&WB 4-19
 4.7.2 Damage to S&WB Facilities and Capabilities Caused by
 Hurricane Katrina and Rita 4-19
 4.7.2 Reclamation of the Mid-City Lowlands (early 1900s) 4-20
 4.7.3 1915 Flood Triggers Heightening of Drainage Canal Levees ... 4-20
 4.7.4 The Lakefront Improvement Project (1926-34) 4-21
 4.7.5 Second Generation of Heightening Drainage Canal
 Levee Embankments (1947) 4-22
 4.7.6 Federal Involvement with the City Drainage
 Canals (1955 – present) 4-22
 4.7.7 Hurricane Katrina Strikes New Orleans – August 2005 4-23

4.8 Commercial Navigation Corridors 4-24
 4.8.1 Inner Harbor Navigation Canal/Industrial Canal 4-24
 4.8.2 Flooding Problems Around the IHNC 4-26
 4.8.3 Intracoastal Waterway 4-26
 4.8.4 Mississippi River Gulf Outlet 4-27

Marsh Deposit ... 3-20
3.7.5 Structural Surcharging 3-21
3.7.6 Extraction of Oil, Gas, and Water 3-21
3.7.7 Coastal Land Loss ... 3-22
3.7.8 Negative Impact of Ground Settlement on Storm Surge 3-22
3.7.9 Conclusions about Ground Settlement 3-23

3.8 References .. 3-23
4.9 Influence of Elevation Datums on New Orleans Flood Protection System
4.9.1 Introduction
4.9.2 17th Street Outfall Canal
4.9.3 London Avenue Outfall Canal
4.9.4 Orleans Outfall Canal
4.9.5 Inner Harbor Navigation Canal – East Levee
4.9.6 Inability to Apply Universal Corrections for Elevation Datums
4.10 Names of New Orleans Neighborhoods
4.11 References

Chapter 5: The Lower Mississippi Region and Plaquemines Parish
5.1 Overview
5.2 Point a la Hache
5.3 Erosion Studies
5.4 Summary
5.5 References

Chapter 6: The St. Bernard Parish and Lower Ninth Ward Protected Area
6.1 Introduction
6.2 The Northeast Frontage Levee
6.3 The Two large Breaches on the East Bank of the IHNC at the Lower Ninth Ward
6.3.1 The IHNC East Bank (South) Breach at the Lower Ninth Ward
6.3.2 The IHNC East Bank (North) Breach at the Lower Ninth Ward
6.3.3 Summary
6.4 Summary and Findings
6.5 References

Chapter 7: The New Orleans East Protected Area
7.1 Introduction
7.2 New Orleans East Hurricane Protection System
7.3 Performance of the New Orleans Hurricane Protection System In Hurricane Katrina
7.3.1 Overview
7.3.2 Chronology of Events in the New Orleans East Protected Area
7.3.3 Damage to Levee System Frontages …………………….. 7-3
 7.3.3.1 GIWW Frontage (Citrus Back and New Orleans
 East Back Levees) ……………………………………… 7-3
 7.3.3.2 IHNC Frontage (IHNC East Levee) …………………. 7-5
 7.3.3.2 Lake Pontchartrain (New Orleans Lakefront, Citrus
 Lakefront and New Orleans East Lakefront Levees)
 and East Side Frontages (New Orleans East Levee) …. 7-5

7.4 Summary of Findings for New Orleans Protected Area ………………… 7-5

7.5 References ………………………………………………………………. 7-6

Chapter 8: The Orleans East Bank (Downtown) and Canal District Protected Area

8.1 Overview ………………………………………….…… 8-1

8.2 Performance of the Flood Protection System Along the West
 Bank of the Inner Harbor Navigation Channel (IHNC) ………… 8-3
 8.2.1 An Early Breach at About 4:45 am …………………….. 8-3
 8.2.2 The CSX Railroad Breach ……………………………….. 8-4
 8.2.3 Breaches and Distressed Sections at the Port of New Orleans … 8-5
 8.2.3.1 Breach at Rail Yard Behind the Port of New Orleans …. 8-6
 8.2.3.2 Erosional Distress at Floodgate Structure Behind
 the Port of New Orleans ……………………………….. 8-7
 8.2.3.3 Two Adjacent Erosional Embankment Breaches at the
 North End of the Port of New Orleans ………………… 8-8
 8.2.4 Summary and Findings ………………………………………….. 8-8

8.3 The Canal District Failures ………………………………………. 8-10
 8.3.1 Introduction ………………………………………….. 8-10
 8.3.2 The Lining of the Drainage Canals ………………………… 8-11
 8.3.3 The E-99 Sheetpile Wall Test Section …………………….. 8-12
 8.3.4 Field Tests for Assessment of Underseepage Risk at the Canals . 8-13
 8.3.5 Water Levels Within the Canals During Hurricane Katrina …… 8-14
 8.3.6 The Orleans Canal ………………………………………….. 8-15
 8.3.7 The 17th Street Canal ………………………………………… 8-17
 8.3.7.1 The Breach on the East Bank …………………….. 8-17
 8.3.7.2 Distressed Section on the West Bank ………………… 8-31
 8.3.8 The Breach Near the South End of London Avenue Canal …… 8-32
 8.3.9 The Breach and Distressed Sections Near the North End
 of the London Avenue Canal …………………………… 8-35
 8.3.10 Summary and Findings …………………………………… 8-39
Chapter 9: Overtopping-Induced Erosion Studies

9.1 Erodibility: A Definition ... 9-1
9.2 Erosion Process ... 9-1
9.3 Velocity vs. Shear Stress ... 9-1
9.4 Erosion Threshold and Erosion Categories 9-2
9.5 Erodibility of Coarse-Grained Soils ... 9-2
9.6 Erodibility of Fine-Grained Soils ... 9-4
9.7 Erodibility and Correlation to Soil Properties 9-6
9.8 The EFA: Erosion Function Apparatus 9-7
9.9 Some Existing Knowledge on Levee Erosion 9-9
 9.9.1 Current Considerations in Design ... 9-9
 9.9.2 Failure Mechanism .. 9-9
 9.9.3 Numerical Modeling .. 9-10
 9.9.4 Laboratory Tests ... 9-10
 9.9.5 Field Tests ... 9-11
 9.9.6 Factors Influencing Resistance to Overtopping 9-12
 9.9.7 Influence of Grass Cover on Surface Erosion 9-13
9.10 Soil and Water Samples Used for Erosion Tests 9-14
9.11 Erosion Function Apparatus (EFA) Test Results 9-16
 9.11.1 Sample Preparation .. 9-16
 9.11.2 Sample EFA Test Results ... 9-16
 9.11.3 Summary Erosion Chart ... 9-17
 9.11.4 Influence of Compaction on Erodibility 9-17
 9.11.5 Influences of Water Salinity on Erodibility 9-18
9.12 Index Properties of the Samples Tested in the EFA 9-18
9.14 Summary ... 9-19
9.15 References .. 9-19

Chapter 10: Earthen Levee Evaluation

10.1 Overview ... 10-1
10.2 Levee Failure Mechanisms .. 10-1
 10.1.1 Structural Causes .. 10-2
 10.1.2 Causes due to Hydraulic Forces .. 10-2
10.1.3 Causes Involving Surface Degradation

10.3 Design Standards

10.3.1 United States Army Corps of Engineers Design Standards

10.3.1.1 Primary Design Procedure

10.3.1.2 Material Selection

10.3.1.3 Required Levee Soil Compaction

10.3.1.4 Embankment Geometry

10.3.1.5 Identified Failure Modes

10.3.1.5 Erosion Susceptibility

10.3.2 United States Federal Emergency Management Agency

10.3.2.1 Freeboard

10.3.2.2 Closures

10.3.2.3 Embankment Protection

10.3.2.4 Embankment and Foundation Stability

10.3.2.5 Settlement

10.3.2.6 Interior Drainage

10.3.2.7 Other Design Criteria

10.3.2.8 Other FEMA Requirements

10.6 Storm Surge and Wave Action During Hurricane Katrina

10.7 Field Reconnaissance and Levee Condition Mapping

10.7.1 Location 1 – Lakefront Airport

10.7.2 Location 2 – Jahncke Pump Station Outfall

10.7.3 Location 3 – Eastern Perimeter of New Orleans East

10.7.4 Location 4 – Southeast Corner of New Orleans East

10.7.5 Location 5 – Entergy Michoud Generating Plant

10.7.6 Location 6 – ICWW/MRGO Southern Levee

10.7.7 Location 7 – Bayou Bienvenue Control Structure

10.7.8 Location 8 – Mississippi River Gulf Outlet

10.7.9 Location 9 – Bayou Dupre Control Structure

10.7.10 Location 10 – St. Bernard Parish Interior Levee

10.7.11 Summary of Observed Performance Factors

10.8 Erosion Evaluation

10.9 Establishment of Design Criteria and Acceptability Performance

10.9.1 USACE Risk Management Approach
10.9.2 Other Risk-Based Approaches .. 10-28
10.10 Conclusions ... 10-29
10.11 References ... 10-30

Chapter 11: Summary of Engineering Lessons

11.1 Introduction ... 11-1
11.2 Overarching Strategic Issues ... 11-1
 11.2.1 Targeted Levels of Safety and Reliability 11-1
 11.2.2 Funding and Resources .. 11-2
11.3 Principal Engineering Findings and Lessons 11-4
 11.3.1 Introduction and Overview 11-4
 11.3.2 Plaquemines Parish ... 11-5
 11.3.3 The East Flank; New Orleans East and the St. Bernard/Lower Ninth Ward Protected Areas 11-5
 11.3.4 The Central Region; the IHNC and the GIWW/MRGO Channel Frontages 11-9
 11.3.5 The Lake Pontchartrain Frontage, and the Drainage Canals 11-14
11.4 References ... 11-22

PART III – ORGANIZATIONAL AND INSTITUTIONAL ISSUES:

Chapter 12: Organized for Failure

12.1 Introduction ... 12-2
12.2 Purposes ... 12-2
12.3 Failure of the NOFDS ... 12-2
12.4 Extrinsic Factors ... 12-4
12.5 Intrinsic Factors ... 12-10
 12.5.1 Standard Project Hurricane 12-11
 12.5.2 Failure Modes and Safety Factors 12-13
12.6 Life-Cycle Development of Flaws 12-16
12.7 Findings – Looking Back ... 12-17
12.8 References ... 12-19

Chapter 13: Organized for Success

13.1 How Safe is Safe Enough ... 13-3
 13.1.1 The Engineering Response to “How Safe is Safe?” 13-5
13.1.2 Insights from Addressing These Issues 13-6
13.2 Maximizing How Safe is Safe Enough in the
U.S. Army Corps of Engineers (Context) 13-7
13.2.1 The Office of the President, the Congress, and the Corps 13-7
13.2.2 Additional External Interstices for the Corps 13-9
13.2.3 The Corps’ Internal Interstices .. 13-11
13.4 Preventing the Next Katrina .. 13-11
13.5 Re-engineering the USACE .. 13-12
13.5.1 Rebuilding the USACE Capacity 13-13
13.5.2 Restructuring the Federal/State Relationship
in Flood Defense ... 13-13
13.5.3 Developing a National Flood Defense Authority 13-14
13.5.4 Creating Effective Disaster Planning 13-14
13.5.4.1 Creating a National Disaster Advisory
Office in the White House ... 13-15
13.5.4.2 Creating a Catastrophic Risk Office in Congress......... 13-15
13.5.4.3 Making FEMA an HRO ... 13-16
13.6 Recommendations – Organizing for Success 13-16
13.7 References .. 13-17

Chapter 14: Engineering for Success
14.1 Introduction ... 14-1
14.2 Engineering Considerations ... 14-3
14.2.1 Physical Facilities ... 14-3
14.3 Engineering Criteria and Guidelines 14-10
14.4 References .. 14-11

PART IV – SUMMARY AND FINDINGS

Chapter 15: Findings and Recommendations
15.1 Overview ... 15-1
15.2 Performance of the Regional Flood Defense System
During Hurricane Katrina ... 15-1
15.3 Engineering Issues ... 15-5
15.4 Looking Back – Organized for Failure 15-8
15.5 Looking Forward – Organizing for Success 15-10

15.5.1 Strategic and Engineering System Issues 15-10

15.5.2 Technology Delivery System Developments –
Organizing for Success .. 15-12

15.6 Conclusion ... 15-13
VOLUME II: APPENDICES

APPENDIX A: TERRESTRIAL LIDAR IMAGERY OF NEW ORLEANS LEVEES AFFECTED BY HURRICANE KATRINA

A.1 Introduction ... A-1
A.2 Methodology .. A-1
A.3 Georeferencing of LIDAR survey data A-3
A.4 Processing of LIDAR Imagery ... A-4
A.5 Data Coverage: LIDAR scan sites at Levee Breaks within the New Orleans Area .. A-4
A.6 Analysis Examples of Levee Deformation Using LIDAR Data A-4
A.7 Summary .. A-6
A.8 References .. A-6

APPENDIX B: BORING LOGS ... B-1

APPENDIX C: CPT LOGS ... C-1

APPENDIX D: STE LABORATORY TESTING D-1

APPENDIX E: U.C. BERKELEY LABORATORY TESTING AND ILIT IN-SITU FIELD VANE SHEAR TESTING E-1

APPENDIX F: LOOKING BACK

F.1 Synopsis of History of the New Orleans Flood Defense System 1965 – 2005 ... F-1
F.2 Learning from Failures .. F-7
 F.2.1 Engineered Systems .. F-7
 F.2.2 Causes of Failures .. F-8
 F.2.3 Magnitude of Failures ... F-9
 F.2.4 Breaching Defenses .. F-9
 F.2.5 Knowledge Challenges .. F-10
 F.2.6 Organizational Malfunctions .. F-11
 F.2.7 Engineering Challenges .. F-12
 F.2.8 Initiating, Contributing, Compounding Events F-13
 F.2.9 High and Low Reliability Organizations: The NASA Columbia Accident Investigation F-14
F.2.10 High Reliability Organizations .. F-14
F.2.11 Low Reliability Organizations .. F-17
F.2.12 Columbia Accident Investigation Board Findings F-17
F.2.13 Summary ... F-21
F.3 Quotations from Key Reports and Papers F-22
 Katrina, Lessons Learned, Report to the President of the United
 F.3.2 Select Bipartisan Committee to Investigate the Preparation for
 and Response to Hurricane Katrina, 2006. A Failure of Initiative,
 F.3.3 Report of the Committee on Homeland Security and Governmental
 Affairs. Hurricane Katrina, A Nation Still Unprepared, United States
 F.3.4 American Society of Civil Engineers External Review Panel
 (ERP). Letter to LTG Carl Strock, Chief of U.S. Army Corps of
 Engineers, February 20, 2006. F-39
 F.3.5 Committee on New Orleans Regional Hurricane Protection Projects,
 National Academy of Engineering and the National Research Council,
 2006. Report to The Honorable John Paul Woodley, Assistant
 Secretary of the Army, Civil Works, Washington, D.C. February.. F-41
 F.3.6 U.S. Government Accountability Office, Army Corps of Engineers
 History of the Lake Pontchartrain and Vicinity Hurricane Protection
 Project, Statement of Anu Mittal, Direction Natural Resources and
 Environment, Testimony Before the Committee on Environment and
 Public Works, U.S. Senate, November 9, 2005; also Testimony before
 the Subcommittee on Energy and Water Development,
 Committee on Appropriations, House of Representatives, September 28, 2005 F-42
 F.3.7 U.S. General Accounting Office, Improved Planning Needed
 by the Corps of Engineers to Resolve Environmental, Technical,
 and Financial Issues on the Lake Pontchartrain Hurricane
 Protection Project, Report to the Secretary of the Army,
 August 17, 1982. ... F-43
 F.3.8 Houck, O. (2006). “Can We Save New Orleans?” Tulane
 Environmental Law Journal, Vol 19, Issue 1, 1-68, New Orleans,
 Louisiana. ... F-44
 F.3.9 Member Scholars of the Center for Progressive Reform (2005).
 An Unnatural Disaster: The Aftermath of Hurricane Katrina, Center
 for Progressive Reform Publication, CPR Publication #512,
 September. ... F-51

F.3.21 Heinzerling, L. and Ackerman, F. (2002). “Pricing the Priceless: Cost-Benefit Analysis of Environmental Protection,” Georgetown Environmental Law and Policy Institute, University Law Center ……………………………………. F-82

F.4 References ………………………………………………………………. F-83
APPENDIX G: LOOKING FORWARD

G.1 High Reliability Organization: The USN Nuclear Propulsion Program ... G-2
G.1.1 The USN Nuclear Propulsion Program .. G-2
G.1.2 Personnel and Recruitment Retention G-4
G.1.3 Engineering Assumptions .. G-6
G.1.4 Conclusion ... G-6

G.2 Findings from Other Studies: Organizing for Success
G.2.7 Input from Citizens of the Greater New Orleans Area: Levees.Org. ... G-19
Basin Foundation, New Orleans. .. G-23

G.3 References ... G-41

APPENDIX H: HOW SAFE IS SAFE? Coping with Mother Nature, Human Nature and Technology’s Unintended Consequences

H.1 Preface .. H-1

H.2 Introduction .. H-2

H.2.1 How Safe is Safe? .. H-2

H.2.2 Risk Analysis as a Survival Skill H-7

H.2.3 Tradeoffs Between Risks, Cost of Mitigation, and Performance ... H-11

H.2.4 Voluntary versus Involuntary Risk H-13

H.2.5 Coping with Threats to Life, Liberty, Property, and the Environment .. H-14

H.3 Government’s Responsibility for Security H-17

H.3.1 Risk Management: Our Constitution, Public Policy and our Culture .. H-17

H.3.2 Resolution by Political Power and Political Will H-19

H.3.3 The President and Congress: Needs for Advice and Counsel .. H-21

H.4 Technology and Its Side Effects H-21

H.4.1 Beyond Technique, Technology as a Social Process H-21

H.4.2 Technology’s Unintended Consequences H-24

H.4.3 What You Can’t Model You Can’t Manage H-27

H.4.4 Over-Design as a Safety Margin H-28

H.5 Bed Rock Values in Public Policy H-31

H.5.1 The Rainbow of Stakeholders H-31

H.5.2 Conflict Management to Balance Benefits and Costs H-33

H.5.3 Tensions Between Industry and Government H-35

H.6 The Ethics of Informed Consent .. H-37
H.6.1 The Role of Media in Exposing Risks H-37
H.6.2 The Power of Informed Consent H-40
H.7 Lessons from the Past .. H-42
 H.7.1 The Exxon Valdez as a Metaphor for System Failure H-42
 H.7.2 Deficits of Foresight, Vigilance, Contingency Resources, Political Will and Trust H-45
H.8 Thinking About The Future .. H-48
 H.8.1 Evaluating Social Choice by Outcomes for the Children ... H-48
 H.8.2 Foresight as an Imperative in Risk Management H-49
 H.8.3 Pathologies for the Short Run H-51
 H.8.4 Early Warning of Close Encounters H-53
H.9 The Anatomy of Risk – A Summary H-54
 H.9.1 Applying These Concepts to Katrina H-56

APPENDIX I: EROSION TEST RESULTS ON NEW ORLEANS LEVEE SAMPLES

 I.1 The EFA: Erosion Function Apparatus I-1
 I.1.1 EFA test procedures ... I-1
 I.1.2 EFA test data reduction I-1
 I.2 Soil and Water Samples Used for Erosion Tests I-3
 I.3 Erosion Function Apparatus (EFA) Test Results I-5
 I.3.1 Sample preparation .. I-5
 EFA Test Results .. I-7